Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (6): 1100-1107    DOI: 10.3785/j.issn.1008-973X.2021.06.010
    
Experimental approach for decomposition of deflection of prismatic beams into flexural and shear deformations
Xue-you QUAN1,2,3(),Jia-di LIU1,2,Ji REN1,2,Bao LIU1,2,Lian-jie LIU1,2
1. School of Civil Engineering, Chongqing University, Chongqing 400045, China
2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China
3. Chongqing College of Architecture and Technology, Chongqing 401331, China
Download: HTML     PDF(1093KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An approach which could accurately decompose deflection of prismatic beams into flexural and shear deflections was proposed. Equation for estimation of decomposed flexural deflection was derived, and changes of diagonals in length caused by those experimentally measured longitudinal deformations were developed based on small deformation theory and under the assumption that flexural deflection can be represented by longitudinal deformation of upper fiber and lower fiber along prescribed beam segment. Equation for estimation of decomposed shear deflection was derived in terms of experimentally measured diagonal deformations under the assumption that shear deformation can only change length of diagonals of prescribed beam segment. Formula for estimation of deflection caused by rotation of target section was derived in terms of experimentally measured target section rotation for asymmetrical load condition. The fore mentioned decomposed flexural deflection, decomposed shear deflection and deflection caused by measured target section rotation add up to estimated deflection of target section, which is completely independent of directly measured deflection at target section. Loading tests on four prismatic rectangular reinforced concrete beams were conducted. Longitudinal deformation of upper fiber and lower fiber along shear span, diagonal deformations and rotation of load point section were measured. Estimated deflection of load point section calculated by using those measured data accorded with directly measured deflection at each load level, which verified the reliability of the proposed deformation decomposition approach.



Key wordsflexural deformation      shear deformation      deformation decomposition      estimated deflection      measured deflection     
Received: 27 November 2020      Published: 30 July 2021
CLC:  TU 375  
Cite this article:

Xue-you QUAN,Jia-di LIU,Ji REN,Bao LIU,Lian-jie LIU. Experimental approach for decomposition of deflection of prismatic beams into flexural and shear deformations. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1100-1107.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.06.010     OR     https://www.zjujournals.com/eng/Y2021/V55/I6/1100


分解等截面直梁弯曲变形和剪切变形的试验方法

提出能够准确分解等截面直梁弯曲变形和剪切变形的试验方法. 基于小变形理论,在梁的弯曲变形可以由梁段上缘、下缘附近纵向纤维长度变化表征的假定下,推导采用实测梁段上、下纵向纤维长度变化计算弯曲挠度的方法,获得弯曲变形对上、下纵向纤维端点对角线长度变化的影响. 在梁的剪切变形只引起梁段对角线长度变化的假定条件下,推导利用实测梁段对角线长度变化计算剪切挠度的方法. 在非对称荷载条件下,确定实测截面转角引起挠度的计算方法. 上述弯曲挠度、剪切挠度和截面转角引起的挠度合并构成目标截面基于变形分解的推算挠度. 推算挠度完全独立于目标截面的实测挠度. 完成4个钢筋混凝土等截面梁试件的荷载试验,实测了剪跨长度范围上缘、下缘附近纵向纤维的长度变化、对角线长度变化和截面转角. 在各级荷载下,利用实测数据计算得到的荷载点截面推算挠度与实测荷载点挠度吻合良好,验证了该变形分解方法的可靠性.


关键词: 弯曲变形,  剪切变形,  变形分解,  推算挠度,  实测挠度 
Fig.1 Flexural deformation characteristics of beam under symmetrical loading condition
Fig.2 Calculation model for flexural deformation
Fig.3 Calculation model for shear deformation
Fig.4 Rotation at load point section
试验区段 截面尺寸 d /mm s /mm a /mm fyv /MPa fs /MPa Fu /kN 破坏形态
SP-1A 260 mm×500 mm 6 100 500 536.4 664.9 544.8 剪切破坏
SP-2A 260 mm×500 mm 8 100 500 474.8 634.0 690.0 弯剪破坏
SP-3A 260 mm×500 mm 6 100 900 536.4 664.9 540.0 剪切破坏
SP-4A 260 mm×500 mm 8 100 900 474.8 634.0 540.0 剪切破坏
Tab.1 Parameters of reinforced concrete beam specimens
Fig.5 Schematic loading diagram of test beam
Fig.6 Measuring system composed of LVDTs and electric inclinometer
Fig.7 DIC system and speckles
Fig.8 Calculation model for rotation of load point section
Fig.9 Comparison of measured load-deflection curves from LVDTs and DIC approaches
Fig.10 Comparison between estimated deflection and measured deflection of each specimen
Fig.11 Installation of metal rod diagram
[1]   HIRAISHI H Evaluation of shear and flexural deformations of flexural type shear walls[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1984, 17 (2): 135- 144
doi: 10.5459/bnzsee.17.2.135-144
[2]   AHMAD S H, XIE Y, YU T Shear ductility of reinforced lightweight concrete beams of normal strength and high strength concrete[J]. Cement Concrete Composites, 1995, 17 (2): 147- 159
doi: 10.1016/0958-9465(94)00029-X
[3]   YANG K, CHUNG H, LEE E, et al Shear characteristics of high-strength concrete deep beams without shear reinforcements[J]. Engineering Structures, 2003, 25 (10): 1343- 1352
doi: 10.1016/S0141-0296(03)00110-X
[4]   易伟建, 潘柏荣, 吕艳梅 HRB500级钢筋配箍的混凝土梁受剪性能试验研究[J]. 土木工程学报, 2012, 45 (4): 56- 62
YI Wei-jian, PAN Bai-rong, LV Yan-mei Experimental study on the shear failure of reinforced concrete beams with grade HRB500 steel stirrups[J]. China Civil Engineering Journal, 2012, 45 (4): 56- 62
[5]   金凌志, 祁凯能, 曹霞 高强钢筋活性粉末混凝土简支梁受剪性能试验研究[J]. 武汉理工大学学报, 2013, 35 (8): 108- 113
JIN Ling-zhi, QI Kai-neng, CAO Xia Experimental study on shear behavior of high strength reinforced reactive poweder concrete beam[J]. Journal of Wuhan University of Technology, 2013, 35 (8): 108- 113
doi: 10.3963/j.issn.1671-4431.2013.08.022
[6]   贾金青, 姚大立, 余芳 集中荷载作用下预应力钢骨超高强混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2013, 34 (12): 112- 120
JIA Jin-qing, YAO Da-li, YU Fang Experimental study on shear performance of prestressed steel ultra-high reinforced concrete beam under concentrated load[J]. Journal of Building Structures, 2013, 34 (12): 112- 120
[7]   LI L Z, JIANG C J, LIU B Z, et al Shear strengthening of fire-damaged reinforced concrete beams using bolted-side plating[J]. Procedia Engineering, 2017, 210: 186- 195
doi: 10.1016/j.proeng.2017.11.065
[8]   王强, 金凌志, 曹霞, 等 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报: 工学版, 2017, 51 (5): 922- 930
WANG Qiang, JIN Ling-zhi, CAO Xia, et al Experimental study on shear performance of reactive powder concrete beam[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 922- 930
[9]   LI L Z, CAI Z W, LU Z D, et al Shear performance of bolted side-plated reinforced concrete beams[J]. Engineering Structures, 2017, 144: 73- 87
doi: 10.1016/j.engstruct.2017.04.043
[10]   张海霞, 孙闯, 李程翔 内嵌FRP筋加固混凝土梁的抗剪性能研究[J]. 沈阳建筑大学学报: 自然科学版, 2018, 34 (3): 419- 429
ZHANG Hai-xia, SUN Chuang, LI Cheng-xiang Study on shear behavior of RC beams strengthened with NSM FRP bars[J]. Journal of Shenyang Jianzhu University: Natural Science, 2018, 34 (3): 419- 429
[11]   HANSAPINYO C, PIMANMAS A, MAEKAWA K, et al Proposed model of shear deformation of reinforced concrete beam after diagonal cracking[J]. Journal of Materials Concrete Structures Pavements, JSCE, 2003, 725 (58): 305- 319
[12]   CLADERA A, MARÍ A R Experimental study on high-strength concrete beams failing in shear[J]. Engineering Structures, 2005, 27 (10): 1519- 1527
doi: 10.1016/j.engstruct.2005.04.010
[1] Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.
[2] Bing FENG,Yong CHEN,Xu CUI,Guo-hui SHEN,Hai-wei XU. Critical loads of axially compressed GFRP round tubes considering shear deformations[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1894-1902.
[3] WANG Zhen,WANG Jing quan,QI Jia nan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 864-870.
[4] WEI Yi-min, YANG Shi-xi, GAN Chun-biao.
Experiment for propagation characteristics of longitudinal wave in multi-step rod with variable cross-section
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1146-1153.
[5] TONG Gen shu, YANG Zhang, ZHANG Lei. Effective rigidity of one side stiffeners in Steel Shear Walls[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2151-2158.
[6] HE Yu-liang, XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Analysis on shear-lag effect of composite girders based on different parabolic warping displacement function[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1933-1940.