Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2076-2084    DOI: 10.3785/j.issn.1008-973X.2020.11.002
    
Effects of stud height on shear behavior of stud connectors
Jin-feng WANG(),Ai-ping ZHANG,Wen-hao WANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1184KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Twenty-four stud connector push-out specimens were prepared and tested to analyze the effect of stud height on shear behavior of stud connectors. The load-slip curves and failure modes of studs with different diameters and heights were obtained, the influence of stud height on shear behavior was investigated, and the formula of shear bearing capacity of stud connectors considering stud height was proposed. Results indicated that the shear bearing capacity increased with the increasing of aspect ratio when the aspect ratio was 4.5~13.2, and the shear stiffness increased with the increasing of aspect ratio when the aspect ratio was less than ten, but the shear stiffness changed slightly when the aspect ratio was more than ten. The formula for calculating the shear bearing capacity of stud connectors with aspect ratio of 4.5~13.2 when shear failure occurs was proposed, which considered more comprehensive factors and agreed well with the test results. The design values of shear stiffness in current specification of China were a little conservative. It is suggested that when the relevant design is to be carried out, Eurocode four specification or the calculation method proposed by Oehlers can be selected as reference to reduce the number of stud shear connectors and decrease the difficulty of design and construction.



Key wordssteel-concrete composite structure      stud connector      stud height      aspect ratio      shear bearing capacity      shear stiffness     
Received: 08 December 2019      Published: 15 December 2020
CLC:  U 44  
Cite this article:

Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.002     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2076


栓钉高度对栓钉连接件抗剪性能的影响

为了研究栓钉高度对栓钉连接件抗剪性能的影响,通过24个栓钉抗剪性能模型推出试件,获得栓钉在不同直径和高度下的荷载-滑移曲线和破坏模态,比较分析栓钉高度对栓钉连接件抗剪性能的影响,建立考虑栓钉高度的抗剪承载力计算式. 研究结果表明:当栓钉连接件长径比为4.5~13.2时,栓钉的抗剪承载力随长径比的增加而增大;当栓钉长径比小于10时,抗剪刚度随长径比的增加而增大,当长径比大于10时,抗剪刚度变化较小. 提出栓钉连接件长径比为4.5~13.2时栓钉连接件发生剪断破坏时的抗剪承载力计算式,该公式考虑的因素更全面,与试验结果较吻合;中国现行规范关于栓钉抗剪刚度的设计值偏保守,在进行设计时可以选取规范Eurocode4或Oehlers提出的计算方法进行参考,以达到减少栓钉使用数量,降低设计和施工难度的目的.


关键词: 钢-混凝土组合结构,  栓钉连接件,  栓钉高度,  长径比,  抗剪承载力,  抗剪刚度 
ds /mm fy /MPa fst /MPa Es /GPa
16 322 384 213
19 354 437 213
22 371 455 213
Tab.1 Principal mechanical properties of stud connectors
Fig.1 Dimensions and details of test specimens of stud connectors
试件分组 试件编号 试件数量 ${d_{\rm{s}}}/{\rm{mm}}$ ${h_{\rm{s}}}/{\rm{mm}}$
STUD1 STUD1-1~2 2 16 80
STUD2 STUD2-1~2 2 16 120
STUD3 STUD3-1~2 2 16 160
STUD4 STUD4-1~2 2 16 200
STUD5 STUD5-1~2 2 19 100
STUD6 STUD6-1~2 2 19 150
STUD7 STUD7-1~2 2 19 200
STUD8 STUD8-1~2 2 19 250
STUD9 STUD9-1~2 2 22 100
STUD10 STUD10-1~2 2 22 160
STUD11 STUD11-1~2 2 22 220
STUD12 STUD12-1~2 2 22 280
Tab.2 Grouping of test specimens of stud connectors
Fig.2 Load and test devices of test specimens of stud connectors
Fig.3 Load-slip curves of stud connectors of 16 mm in diameter
Fig.4 Load-slip curves of stud connectors of 19 mm in diameter
Fig.5 Load-slip curves of stud connectors of 22 mm in diameter
试件分组 hs /ds N0 /kN Nu /kN ρ ks /(kN·mm?1)
试件1 试件2 均值 试件1 试件2 均值 试件1 试件2 均值
STUD1 5.0 41.3 42.0 41.6 66.8 65.3 66.0 0.63 206.3 210.0 208.1
STUD2 7.5 46.0 49.9 47.9 95.0 80.5 87.8 0.55 230.0 249.4 239.7
STUD3 10.0 45.0 57.3 51.1 97.0 88.8 92.9 0.55 225.0 286.3 255.6
STUD4 12.5 58.3 45.5 51.9 113.3 92.5 102.9 0.50 291.3 227.5 259.4
STUD5 5.3 45.7 50.7 48.2 79.8 90.1 84.9 0.57 228.6 253.6 241.1
STUD6 7.9 68.5 84.0 76.3 131.8 131.3 131.5 0.58 342.5 420.0 381.3
STUD7 10.5 79.3 78.3 78.8 138.0 155.0 146.5 0.54 396.3 391.3 393.8
STUD8 13.2 74.5 76.0 75.3 141.4 154.5 147.9 0.51 372.5 380.0 376.3
STUD9 4.5 84.4 89.3 86.8 143.3 122.3 132.8 0.65 422.1 446.3 434.2
STUD10 7.3 106.3 113.0 109.7 165.5 174.7 170.1 0.64 531.5 565.0 548.3
STUD11 10.0 107.9 119.6 113.7 176.3 191.6 183.9 0.62 539.4 597.9 568.6
STUD12 12.7 116.7 114.5 115.6 216.4 195.8 206.1 0.56 583.7 572.5 578.1
Tab.3 Push-out test results of stud connectors
Fig.6 Relation between shear bearing capacity and aspect ratio of stud connectors
Fig.7 Relation between shear stiffness and aspect ratio of stud connectors
Fig.8 Failure modes of stud connectors on side of steel beam
Fig.9 Failure modes of stud connectors on side of concrete slab
Fig.10 Schematic diagram of CT scan test
Fig.11 Deformation of stud connectors
试件分组 $\overline {{N_{\rm{u}}}} /{\rm{kN}}$ ${N_{\rm{uc} } }/{\rm{kN} }$ ${N_{\rm{uc} } }/\overline { {N_{\rm{u} } } }$
式(1) 式(2) 式(3) 式(4) 式(1) 式(2) 式(3) 式(4)
STUD1 66.0 54.0 52.6 49.4 65.6 0.82 0.80 0.75 0.99
STUD2 87.8 54.0 52.6 49.4 65.6 0.62 0.60 0.56 0.75
STUD3 92.9 54.0 52.6 49.4 65.6 0.58 0.57 0.53 0.71
STUD4 102.9 54.0 52.6 49.4 65.6 0.52 0.51 0.48 0.64
STUD5 84.9 86.7 83.3 79.3 105.3 1.02 0.98 0.93 1.24
STUD6 131.5 86.7 83.3 79.3 105.3 0.66 0.63 0.60 0.80
STUD7 146.5 86.7 83.3 79.3 105.3 0.59 0.57 0.54 0.72
STUD8 147.9 86.7 83.3 79.3 105.3 0.59 0.56 0.54 0.71
STUD9 132.8 121.0 115.9 103.2 146.9 0.91 0.87 0.78 1.11
STUD10 170.1 121.0 115.9 103.2 146.9 0.71 0.68 0.61 0.86
STUD11 183.9 121.0 115.9 103.2 146.9 0.66 0.63 0.56 0.80
STUD12 206.1 121.0 115.9 103.2 146.9 0.59 0.56 0.50 0.71
Tab.4 Comparison of shear bearing capacity between experimental values and calculated values of stud connectors
Fig.12 Comparison of shear bearing capacity between experimental and calculated values of stud connectors
试件分组 $\overline { {k_{\rm{s} } } }\left/{\left( { {\rm{kN} } \cdot {\rm{m} }{ {\rm{m} }^{ - 1} } } \right) }\right.$ ${k_{\rm{sc} } }\left/{\left( { {\rm{kN} } \cdot {\rm{m} }{ {\rm{m} }^{ - 1} } } \right) }\right.$ ${k_{\rm{sc}}}/\overline {{k_{\rm{s}}}} $
式(7) 式(8) 式(9) 式(10) 式(7) 式(8) 式(9) 式(10)
STUD1 208.1 66.0 64.0 400.0 219.4 0.32 0.31 1.92 1.05
STUD2 239.7 87.8 85.1 532.1 291.9 0.37 0.36 2.22 1.22
STUD3 255.6 92.9 90.0 563.0 308.8 0.36 0.35 2.20 1.21
STUD4 259.4 102.9 99.7 623.6 342.1 0.40 0.38 2.40 1.32
STUD5 241.1 84.9 107.0 353.8 237.7 0.35 0.44 1.47 0.99
STUD6 381.3 131.5 165.7 547.9 368.1 0.34 0.43 1.44 0.97
STUD7 393.8 146.5 184.6 610.4 410.1 0.37 0.47 1.55 1.04
STUD8 376.3 147.9 186.4 616.3 414.1 0.39 0.50 1.64 1.10
STUD9 434.2 132.8 185.9 632.4 321.1 0.31 0.43 1.46 0.74
STUD10 548.3 170.1 238.1 810.0 411.3 0.31 0.43 1.48 0.75
STUD11 568.6 183.9 257.5 875.7 444.6 0.32 0.45 1.54 0.78
STUD12 578.1 206.1 288.5 981.4 498.3 0.36 0.50 1.70 0.86
Tab.5 Comparison of shear stiffness between experimental and calculated values of stud connectors
[1]   汪洋, 张玉杰, 陈炳聪 钢-混凝土组合梁栓钉剪力连接件抗剪承载力研究[J]. 建筑科学, 2019, 35 (1): 20- 24
WANG Yang, ZHANG Yu-jie, CHEN Bing-cong Experimental study of shear capacity of stud shear connectors of steel-concrete composite girder[J]. Architectural Science, 2019, 35 (1): 20- 24
[2]   王倩, 刘玉擎 焊钉连接件抗剪承载力试验研究[J]. 同济大学学报: 自然科学版, 2013, 41 (5): 659- 663
WANG Qian, LIU Yu-qing Experimental study of shear capacity of stud shear connectors[J]. Journal of Tongji University: Natural Science, 2013, 41 (5): 659- 663
[3]   薛伟辰, 丁敏, 王骅, 等 单调荷载下栓钉连接件受剪性能试验研究[J]. 建筑结构学, 2009, 30 (1): 95- 100
XUE Wei-chen, DING Min, WANG Hua, et al Experimental studies on behavior of stud shear connectors under monotonic loads[J]. Journal of Building Structures, 2009, 30 (1): 95- 100
[4]   European Committee for Standardization. Design of composite steel and concrete structures, Part 1-1: general rules and rules for buildings Eurocode 4: [S]. Brussels: ECS, 2004.
[5]   中华人民共和国住房和城乡建设部及中华人民共和国国家质量监督检验检疫总局. 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2017.
[6]   丁发兴, 倪鸣, 龚永智, 等 栓钉剪力连接件滑移性能试验研究及受剪承载力计算[J]. 建筑结构学报, 2014, 35 (9): 98- 106
DING Fa-xing, NI Ming, GONG Yong-zhi, et al Experimental study on slip behavior and calculation of shear bearing capacity for stud shear connectors[J]. Journal of Building Structures, 2014, 35 (9): 98- 106
[7]   田启贤, 杜新喜 高性能混凝土复合铺装短栓钉推出试验研究[J]. 桥梁建设, 2016, 46 (1): 40- 46
TIAN Qi-xian, DU Xin-xi Short stud push-out test study of high performance concrete composite avement[J]. Bridge Construction, 2016, 46 (1): 40- 46
[8]   蔺钊飞, 刘玉擎, 贺君 焊钉连接件抗剪刚度计算方法研究[J]. 工程力学, 2014, 31 (7): 85- 90
LIN Zhao-fei, LIU Yu-qing, HE Jun Study on calculation method of shear stiffness of stud shear connectors[J]. Engineering Mechanics, 2014, 31 (7): 85- 90
[9]   邢修正, 刘忠, 杨龙刚, 等 栓钉连接件抗剪刚度计算与荷载-滑移曲线方程[J]. 工程建设, 2016, 48 (2): 7- 10
XING Xiu-zheng, LIU Zhong, YANG Long-gang, et al Shear stiffness calculation and load-slip curve equation of stud shear connectors[J]. Engineering Construction, 2016, 48 (2): 7- 10
[10]   中华人民共和国国家质量监督检验检疫总局. 电弧螺柱焊用圆柱头焊钉: GB/T 10433—2002[S]. 北京: 中国标准出版社, 2003.
[11]   国防科学技术工业委员会. 工业射线层析成象(CT)检测: GJB 5312—2004 [S]. 北京: 人民交通出版社, 2004.
[12]   中华人民共和国住房和城乡建设部及中华人民共和国国家质量监督检验检疫总局. 钢-混凝土组合桥梁设计规范: GB 50917—2013[S]. 北京: 人民交通出版社, 2013.
[13]   AASHTO LRFD. Bridge design specifications [S]. 4th ed. Washington DC: American Association of State Highway and Transportation Officials, 2007.
[14]   刘玉擎, 武建敏, 蒋劲松 使用状态对焊钉连接件抗剪性能影响的试验研究[J]. 桥梁建设, 2007, 12 (6): 23- 25
LIU Yu-qing, WU Jian-min, JIANG Jin-song Experimental study on effect of service condition on shear behavior of stud shear connectors[J]. Bridge Construction, 2007, 12 (6): 23- 25
doi: 10.3969/j.issn.1003-4722.2007.06.007
[15]   蔺钊飞, 刘玉擎 大直径焊钉连接件抗剪性能试验[J]. 同济大学学报: 自然科学版, 2015, 43 (12): 1788- 1793
LIN Zhao-fei, LIU Yu-qing Experimental study on shear behavior of large diameter stud connectors[J]. Journal of Tongji University: Natural Science, 2015, 43 (12): 1788- 1793
[16]   SHIM C S, LEE P G, YOON T Y Static behavior of large stud shear connectors[J]. Engineering Structures, 2004, 26 (12): 1853- 1860
doi: 10.1016/j.engstruct.2004.07.011
[17]   Japanese Society of Steel Construction. Standard on push-out test for headed stud (draft) [S]. Tokyo: Japanese Society of Steel Construction, 1996.
[1] Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.
[2] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[3] Wen-tao YU,Xu XIE,Cheng CHENG. Effects of welding details on ultra-low cycle fatigue performance of T-welded joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 31-37.
[4] Xiang-chuan MENG,Jia-zuo ZHOU,Chang-fu WEI,Pan CHEN,Kun ZHANG,Zheng-yan SHEN. Freezing characteristic curve model of saline soil based on generalized Clapeyron equation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2377-2385.
[5] Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.
[6] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[7] Qiong YI,Shao-ming LIAO,Ji-wen ZHU,Wei-zhong XU. Effect of soil plugging during press-in caisson sinking in soft ground[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1380-1389.
[8] Dong-xing WANG,Lin-feng WU,Yi-kai TANG,Xue-yong XU. Mud-water separation process and performance evaluation of waste slurry from construction engineering[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1049-1057.
[9] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[10] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[11] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.
[12] Jiang-xing LONG,Wei-liang JIN,Jun ZHANG,Jiang-hong MAO,Lei CUI. Experimental study on fatigue properties of steel bars after electrochemical repair[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 64-72.
[13] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[14] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[15] Jin-feng WANG,Tian-mei WU,Jian-jiang WANG,Min-quan WANG,Rong-qiao XU. Analysis of transverse separated-block construction effects of steel box girders based on partial shear theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1380-1388.