Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 558-568    DOI: 10.3785/j.issn.1008-973X.2022.03.015
    
Tradeoff optimization of key elements of technical interface of railway bridge-tunnel engineering
Xue-ying BAO1(),Ya-juan LI1,Suo-ting HU2,3,Xin-lin BAN2,3,Lin WANG1,Jian-chao XU2,3
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Railway Engineering Research Institute, China Academy of Railway Sciences, Beijing 100081, China
3. State Key Laboratory for Track Technology of High-Speed Railway, China Academy of Railway Sciences, Beijing 100081, China
Download: HTML     PDF(1195KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to collaboratively and optimally control the key elements of the technical interface of the railway bridge-tunnel in the arduous mountainous area, the tradeoff optimization model of the key elements for the technical interface was established, which was combined the multi-attribute utility function and the "three-one" elements transformation structure. Firstly, the relationships among quality, schedule, cost and safety were analyzed and quantified by functional forms. The "three-one" elements transformation structure was employed to determine the "main attachment" dimensions, and the tradeoff optimization function of the key elements for the technical interface of the railway bridge-tunnel in the arduous mountainous area was established. Then based on the mechanism that the technical interface to the key elements, the decision preference coefficients of the tradeoff optimization function were determined by ANP, the achievement scalarizing functions preference inspired co-evolutionary algorithm (ASF-PICEA-g) was used to obtain the optimal solution of the tradeoff optimization model, and find the optimal solution of each key element under the optimal solution of the whole model. Finally, both the rationality of the tradeoff optimization function and the effectiveness of the ASF-PICEA-g were verified by constructing the tradeoff optimization function of the technical interface between the Zangmu Bridge and the Allah Tunnel and carrying out the optimization analysis.



Key wordsbridge-tunnel technology interface      key elements      multi-attribute utility function      preference vector     
Received: 16 April 2021      Published: 29 March 2022
CLC:  U 24  
  U 25  
Fund:  国家自然科学基金资助项目(71942006);中国铁道科学研究院集团有限公司基金资助项目(2020YJ218)
Cite this article:

Xue-ying BAO,Ya-juan LI,Suo-ting HU,Xin-lin BAN,Lin WANG,Jian-chao XU. Tradeoff optimization of key elements of technical interface of railway bridge-tunnel engineering. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 558-568.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.015     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/558


铁路桥隧工程技术接口的关键要素均衡优化

为了实现对艰险山区铁路桥隧工程技术接口关键要素的协调优化控制,将多属性效用函数与“三一”要素转化结构结合,构建技术接口的关键要素均衡优化模型. 分析质量、进度、成本、安全要素间的关系,将它们的关联性以函数形式量化,并利用“三一”要素转化结构确定关键要素间的“主附”维度,构建艰险山区铁路桥隧工程技术接口的关键要素均衡优化目标函数. 基于技术接口对关键要素的作用机理,利用ANP确定均衡优化函数的决策偏好系数,采用基于偏好向量引导的高维目标协同进化算法(ASF-PICEA-g)求得均衡优化模型的最优解,并在整体模型的最优解下得到各关键要素的较优解. 以藏木特大桥与安拉隧道为例,对其技术接口构建均衡优化函数并进行优化分析,结果验证了构建的均衡优化函数的合理性以及ASF-PICEA-g在求解该模型方面的有效性.


关键词: 桥隧工程技术接口,  关键要素,  多属性效用函数,  偏好向量 
Fig.1 Relationship between schedule-quality-safety-cost
模式 主要素1 主要素2 主要素3 附要素
QCT-S 质量 成本 进度 安全
SQC-T 安全 质量 成本 进度
QTS-C 质量 进度 安全 成本
CTS-Q 成本 进度 安全 质量
Tab.1 Basic combination of "three-one" elements of technical interface
Fig.2 Schematic of transformation of key elements
关键要素 影响因素 描述
质量B1 接口管理落实情况B11 管理体系不够完善,忽视接口问题和接口管理,缺乏接口管理知识和资源,未制定有效的接口管理方法和程序,技术接口管理手段匮乏,质量控制措施不合理或未落实
接口施工环境条件B12 艰险山区地质条件恶劣,自然灾害频发,难以预料的极端天气条件
作业人员技术水平B13 缺乏熟练工,工人没有达到工种技能要求
接口施工材料质量性能B14 艰险山区铁路桥隧工程特有材料,材料质量差或尺寸误差大,材料数量不够,材料性能不符合要求
技术和设备应用合理性B15 技术:艰险山区铁路桥隧工程特殊施工技术的适用性,技术接口特殊施工技术与新设备的
匹配性。设备:人-机界面差,设备间空间位置冲突
接口文档管理B16 不合格的规格说明和图纸,图纸对接口细节描述不足,缺乏接口的定义和说明文件,缺乏接口的分析、设计和任务分配文件,缺乏用于解决接口问题的操作和维护说明
进度B2 接口信息传递B21 未知的信息需求,不良的沟通方式,缺乏统一的信息标准,文化的差异性导致信息接收延迟
接口工作顺序B22 交叉作业工序安排不合理,缺少合理的进度控制措施,忽略专业之间的接口关系,忽略接口任务的特点、工序
接口逻辑顺序B23 不适当的施工方法和程序,接口工序未做工期策划,缺乏及时的进度更新和协调措施,缺少
快速跟踪接口进展的方法,专业结合部没有统一协调安排
接口交接时间B24 设计文件的提交或物项的供应不及时,会签制度和时间衔接不匹配,生产许可和施工图纸提交和批准滞后,设计与施工之间技术交底不完全,技术接口交接活动不恰当
接口工作分包B25 不当的工作分解,工作范围划分不当,专业接口划分不合理
接口双方协作B26 对接口关系了解不深,对接口管理职责与分工了解不透,设计与施工缺乏指导与反馈,无法
同时在现场工作,缺乏专业协调
成本B3 接口问题导致经济纠纷B31 延迟付款,设计、施工过低的预算,接口界限不明确造成的成本争议
接口数量及复杂程度B32 艰险山区铁路工程复杂,施工技术难度高,部分技术接口采用新技术,导致各专业接口复杂,数量增多,需花费更多费用
接口施工造成资源消耗B33 错误的订单,忽略资源的限值,劳动力、材料、设备过度浪费,技术接口返工导致资源和
费用消耗
安全B4 接口相关规范、制度B41 技术接口施工过程中施工人员未按照相关建设规范、施工技术守则进行作业,施工方违反
安全规定,安全制度未落实
危岩稳定性安全防护B42 艰险山区存在危岩落石、高地应力及软岩变形等不良地质,导致技术接口工作环境不安全
技术接口施工规范程度B43 未按设计图纸级规范进行施工,施工误差偏大,技术接口施工时存在突发事故
接口安全责任落实B44 安全风险管理差,技术接口施工本身存在安全隐患,安全教育培训未落实,安全设备准备不足
接口安全技术交底规范性B45 不重视技术和工程的实施交底,接口技术交底不够详细或不全面,接口安全技术交底不具体、不明确
Tab.2 Influencing factors and description of key elements with technical interface
Fig.3 Schematic diagram of achievement scalarizing functions preference inspired co-evolutionary algorithm
Fig.4 Preference area selection strategy
Fig.5 Flow chart of achievement scalarizing functions preference inspired co-evolutionary algorithm
接口主题 接口描述 接口类型
桥隧连接I1 进口端由 24 m 棚洞连接,由隧道方施工,隧道进口采用棚洞洞门,采用框架式棚洞型式 物理连接
桥隧相连开挖接口I2 桥台及相邻桥墩的基础开挖及防护应考虑对隧道洞门结构基底的影响 物理连接
桥台伸入隧道接口I3 藏木特大桥3# 桥台深入隧道内,不设台身,由隧道专业在隧道底板上预留承台基础, 基础上预留支承垫石位置,施工时应待隧道洞口成型后,再施工相应的桥梁工程 物理连接
边坡防护衔接I4 在接口处,峡谷存在危岩落石,采取措施进行防护,做好防护衔接 物理连接
不均匀沉降I5 桥梁、隧道所处的地质状况不同,各自建成后的结构刚度也不一样,造成不均匀沉降 功能匹配
锚碇的锚固I6 锚碇是悬索桥中主缆的锚固构造,主缆索中的拉力通过锚碇传入基础. 采用重力式锚碇会在隧道洞口处增加巨大应力,采用隧道式锚碇会增加隧道周边的围岩应力 功能匹配
桥隧相连防水接口I7 隧道进出口0~500 m,环向施工缝(含仰拱)中埋式镀锌钢板止水带+背贴式塑料止水带(EVA)防水,其余环向施工缝(含仰拱)中埋式橡胶止水带+遇水膨胀橡胶止水条防水 功能匹配
桥隧相连水沟接口I8 隧道内侧沟通过纵、横向排水工程措施将汇水两侧或单侧引排至桥梁锥坡外,设置排水沟槽排放至自然沟谷 功能匹配
电缆槽槽道衔接I9 由于桥梁、隧道工程结构差异,在衔接处设置过渡电缆井将电缆槽内的线缆平顺连接 功能匹配
衔接的平顺性I10 为了满足舒适性,安全性的顶层目标,须做好桥隧衔接的平顺性 功能匹配
Tab.3 Technical interface identification table of bridge-tunnel Engineering
关键要素 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10
B1 0.338 0.333 0.267 0.293 0.381 0.316 0.321 0.283 0.280 0.326
B2 0.300 0.302 0.390 0.245 0.297 0.283 0.349 0.344 0.356 0.247
B3 0.167 0.176 0.180 0.124 0.134 0.149 0.134 0.118 0.123 0.157
B4 0.195 0.189 0.163 0.338 0.188 0.252 0.196 0.255 0.241 0.269
Tab.4 Decision preference coefficient
接口任务 $T_{j}^i$/d $T_j^s$/d $C_{j}^i$/万元 $C_{j}^s$/万元 $Q_{j}^i$/% $w_j^Q$ ${S_{^i}}$/% $w_j^S$
清除落石 8 11 17.74 20.95 87.2 0.227 9 92.1 0.152 8
安装锚杆 24 26 46.81 52.10 84.2 0.186 8 82.5 0.215 0
初喷混凝土 18 21 32.91 40.32 91.4 0.211 9 92.1 0.226 8
悬挂钢筋网片 30 34 52.60 60.99 92.5 0.150 3 83.2 0.189 9
复喷射混凝土 12 15 20.26 24.35 95.2 0.223 0 87.6 0.215 5
Tab.6 Key elements parameters of slope protection connection
接口任务 $T_{j}^i$/d $T_{j}^s$/d $C_{j}^i$/万元 $C_{j}^s$/万元 $Q_{j}^i$/% $w_j^Q$ ${S_{^i}}$/% $w_j^S$
立柱基础 14 18 21.74 27.95 84.4 0.227 9 84.3 0.152 8
纵梁 31 37 42.81 51.10 82.5 0.186 8 90.7 0.215 0
横梁 35 40 51.91 59.32 98.3 0.211 9 94.5 0.226 8
T型梁 25 28 36.60 40.99 90.6 0.150 3 92.7 0.189 9
柔性网 20 23 47.26 54.35 89.4 0.223 0 95.5 0.215 5
Tab.5 Key parameters of bridge-tunnel connection
Fig.6 Dynamic evolution of balance optimization function of bridge-tunnel connection interface
Fig.7 Dynamic evolution of slope protection connection balance optimization function
施工序号 接口任务 $T_{j}^i$/d $T_j^s$/d $C_{j}^i$/万元 $C_j^s$/万元 $Q_{j}^i$/% $w_j^Q$ ${S_{^i}}$/% $w_j^S$
1 隧道开挖预留 18 24 18.43 20.32 82.1 0.090 4 93.4 0.130 2
2 隧道洞口修筑 54 64 132.34 140.43 83.5 0.068 5 83.3 0.170 8
3 超前加固 32 38 22.81 25.10 89.5 0.127 8 92.3 0.137 6
4 桥台钢筋绑扎 22 28 31.91 39.32 93.5 0.073 1 83.2 0.119 7
5 桥台模板固定 18 25 26.60 30.99 92.4 0.246 4 93.2 0.194 3
6 混凝土浇筑 16 22 17.26 24.35 82.1 0.151 7 82.1 0.195 8
7 养护 14 19 10.23 13.24 93.6 0.242 0 93.4 0.051 5
Tab.7 key element parameters of abutment entry tunnel interface
Fig.8 Dynamic evolution of balance optimization function of bridge abutment into tunnel interface
[1]   JU Q Q, DING L Y A web-based system for interface management of metro equipment engineering[J]. Journal of Intelligent and Robotic Systems, 2015, 79: 577- 590
doi: 10.1007/s10846-014-0121-y
[2]   SAMIN S, MAHDI S, CARL T, et al. Interface management model for mega capital projects [C]// Construction Research Congress 2012: Construction Challenges in a Flat World. West Lafayette: ASCE, 2012: 447-456.
[3]   TIAN X L. Influencing factors for project interface management [C]// ICCREM 2013: Construction and Operation in the Context of Sustainability. Karlsruhe: ASCE, 2013: 448-456.
[4]   NUTTENS T, DE BREUCK V, CATTOOR R, et al Using BIM models for the design of large rail infrastructure projects: key factors for a successful implementation[J]. International Journal of Sustainable Development and Planning, 2018, 13 (1): 73- 83
doi: 10.2495/SDP-V13-N1-73-83
[5]   NILSEN M A, FALK K, HAUGEN T A Reducing project cost growth through early implementation of interface management[J]. INCOSE International Symposium, 2018, 28 (1): 96- 114
doi: 10.1002/j.2334-5837.2018.00470.x
[6]   琚倩茜, 姜红丙 城市轨道交通工程关键接口识别方法研究[J]. 铁道科学与工程学报, 2020, 17 (10): 2672- 2679
JU Qian-qian, JIANG Hong-bing Research on key interface points identification for metro projects[J]. Journal of Railway Science and Engineering, 2020, 17 (10): 2672- 2679
[7]   沈文欣, 唐文哲, 张清振, 等 基于伙伴关系的国际EPC项目接口管理[J]. 清华大学学报:自然科学版, 2017, 57 (6): 644- 650
SHEN Wen-xin, TANG Wen-zhe, ZHANG Qing-zhen, et al Partnering to enhance interface management in international EPC projects[J]. Journal of Tsinghua University: Science and Technology, 2017, 57 (6): 644- 650
[8]   蔡文涛. 高速公路大中修工程的多目标集成管理研究 [D]. 武汉: 武汉理工大学, 2017: 69-72.
CAI Wen-tao. A research on integrated multi-objective management [D]. Wuhan: Wuhan University of Technology, 2017: 69-72.
[9]   钟登华, 李正, 吴斌平, 等 基于Pareto解的面板堆石坝施工工期-质量-成本均衡优化研究[J]. 天津大学学报:自然科学与工程技术版, 2016, 49 (10): 1001- 1007
ZHONG Deng-hua, LI Zheng, WU Bin-ping, et al Time-quality-cost tradeoff optimization of rockfill dam construction based on Pareto solution[J]. Journal of Tianjin University: Science and Technology, 2016, 49 (10): 1001- 1007
[10]   袁剑波, 毛红日, 戴坤阳 非线性关系下绿色施工管理多目标权衡研究[J]. 科技进步与对策, 2017, 34 (9): 33- 37
YUAN Jian-bo, MAO Hong-ri, DAI Kun-yang Multi-objective tradeoff of green construction management under nonlinear relation[J]. Science and Technology Progress and Policy, 2017, 34 (9): 33- 37
doi: 10.6049/kjjbydc.2017GC0015
[11]   琚倩茜. 面向联合调试的地铁设备系统多属性集成接口管理研究 [D]. 武汉: 华中科技大学, 2017: 37-40.
JU Qian-qian. Research on multi-attribute integration interface management of metro equipment system for joint commissioning [D]. Wuhan: Huazhong University of Science and Technology, 2017: 37-40.
[12]   郑雨茜, 鲍学英 基于ANP和扩展TOPSIS法的青藏铁路冻土路基安全性分析[J]. 铁道科学与工程学报, 2018, 15 (3): 605- 613
ZHENG Yu-qian, BAO Xue-ying The safety analysis of the Qinghai-Tibet railway permafrost subgrade based on ANP and the extension of TOPSIS method[J]. Journal of Railway Science and Engineering, 2018, 15 (3): 605- 613
doi: 10.3969/j.issn.1672-7029.2018.03.009
[13]   WESHAH N, GHANDOUR W E, JERGEAS G, et al Factor analysis of the interface management (IM) problems for construction projects in Alberta[J]. Canadian Journal of Civil Engineering, 2013, 40 (9): 848- 860
doi: 10.1139/cjce-2012-0531
[14]   王峰. 高速铁路工程系统接口技术研究 [D]. 北京: 中国铁道科学研究院, 2013: 101-110.
WANG Feng. Research on the interface technology of high-speed railway engineering system [D]. Beijing: China Academy of Railway Sciences, 2013: 101-110.
[15]   杜洁洁. 基于多偏好协同的高维目标进化算法研究[D]. 杭州: 浙江工业大学, 2018: 31-36.
DU Jie-jie. Research on high-dimensional target evolution algorithm based on multi-preference collaboration [D]. Hangzhou: Zhejiang University of Technology, 2018: 31-36.
[16]   王丽萍, 陈宏, 杜洁洁, 等 偏好向量引导的高维目标协同进化算法[J]. 软件学报, 2020, 31 (12): 3716- 3732
WANG Li-ping, CHEN Hong, DU Jie-jie, et al Preference vector guided coevolutionary algorithm for many-objective optimization[J]. Journal of Software, 2020, 31 (12): 3716- 3732
[1] Hong-xia WANG,Jian CHEN,Yan-fen CHENG. Improved collaborative filtering algorithm to revise users' rating by review mining[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 522-532.