Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 550-557    DOI: 10.3785/j.issn.1008-973X.2022.03.014
    
General calculation method for manufacturing parameters of steel box girder in staged construction
Jin-feng WANG1(),Song-wei YANG1,Yang-yang KANG2,Hua-wei XIANG1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Fuyuan County Transportation Bureau, Qujing 655500, China
Download: HTML     PDF(1249KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to accurately calculate the manufacturing parameters of steel box girder in staged construction and form a simple and unified solution idea, a general calculation method for manufacturing parameters of the steel box girder bridge such as the manufacturing angle between the segments and the length of the top and bottom plates was proposed, based on the idea of achieving smooth butt joints at the interface of the sections during installation. This method determines the relative positional relationship between the installed section and the section to be installed at the bridge site directly according to the cumulative displacement of the structure, and takes the girder length at the centroid of the segment under design finished bridge state as the datum length. It was applied to a three-span steel box continuous girder bridge constructed by large-segment hoisting method. The manufacturing parameters of each small-segment steel box girder were accurately calculated, and the processing length of the top and bottom plates at the joints of the large-segment steel box girder was accurately corrected. The results show that the welding seam width at the interface of small-segment steel box girder is uniform and consistent after manufacturing, the end faces of the large-segment steel box girder were accurately matched during on-site installation, and the alignment of main girder after closuring is in good agreement with the design alignment, which verify the correctness of the proposed method.



Key wordsbridge structure      staged construction      steel box girder      manufacturing parameters      general calculation method     
Received: 29 April 2021      Published: 29 March 2022
CLC:  U 44  
Fund:  国家自然科学基金资助项目(51878603)
Cite this article:

Jin-feng WANG,Song-wei YANG,Yang-yang KANG,Hua-wei XIANG. General calculation method for manufacturing parameters of steel box girder in staged construction. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 550-557.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.014     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/550


分阶段施工中钢箱梁制造参数的通用计算方法

为了精确计算分阶段施工中钢箱梁制造参数,形成简便统一的求解思路,基于安装时节段间交界面实现平顺对接的思想,直接根据结构累计位移确定已安装、待安装节段桥位现场的相对位置关系,以设计成桥状态下节段形心处梁长为基准,提出分阶段施工钢箱梁桥节段间制造夹角、顶底板长度制造参数的通用计算方法. 将该方法应用于三跨钢箱连续梁桥大节段吊装施工,准确计算各小节段钢箱梁制造参数,并精准修正大节段接缝处顶底板加工长度. 结果表明:制造完成后各小节段钢箱梁交界面焊缝宽度均匀一致,现场安装时大节段钢箱梁端面实现精准匹配,合龙后主梁线形与设计线形吻合良好,验证了所提方法的正确性.


关键词: 桥梁结构,  分阶段施工,  钢箱梁,  制造参数,  通用计算方法 
Fig.1 Determination for manufacturing status of segments in staged construction
Fig.2 Calculation of manufacturing included angle between segments
Fig.3 Relationship between manufacturing included angle between segments and neutral axis included angle
Fig.4 Length correction of segment top and bottom plate
Fig.5 Calculation of girder length at centroid under design finished bridge state
Fig.6 Span layout of three-span continuous beam bridge
Fig.7 Segment division of steel box girder
Fig.8 
节段 $H_i^{\text{D}}$/m $\Delta _i^{\text{D}}$/mm ${L_{i,{\text{p}}}}$/m ${\theta _{i - 1,{{z} } } }$/(°) $\delta _{i - 1,i}^0$/(°) ${\xi _{i - 1,i}}$/(°) ${h_{i - 1,{\text{t}}}}$/mm ${h_{i - 1,{\text{b}}}}$/mm ${d_{i - 1,{\text{t}}}}$/mm ${d_{i - 1,{\text{b}}}}$/mm
0# 37.332 ?3.0
1# 37.614 61.4 14.1 1.407
2# 37.840 108.1 15.0 1.041 ?0.283 ?0.083 1573.1 2926.9 2.3 ?4.2
3# 38.090 119.3 12.5 1.197 0.283 -0.127 1647.2 2852.8 3.7 ?6.3
4# 38.417 105.4 12.5 1.438 0.357 ?0.115 1647.2 2852.8 3.3 -5.7
5# 38.590 71.7 12.5 0.635 ?0.713 ?0.090 1569.4 2930.6 2.5 ?4.6
6# 38.650 31.9 12.5 0.096 ?0.511 ?0.028 1647.2 2852.8 0.8 ?1.4
7# 38.642 7.0 10.0 ?0.188 ?0.324 0.040 1836.4 3170.2 ?1.3 2.2
8# 38.544 ?4.7 10.0 ?0.632 ?0.519 0.075 2044.4 3495.6 ?2.7 4.6
9# 38.439 ?2.8 7.5 ?0.785 ?0.236 0.082 2343.0 3730.3 ?3.4 5.3
10# 38.559 14.3 6.0 1.309 1.946 0.149 2597.8 3875.5 ?6.7 10.0
11# 38.964 55.3 7.5 3.401 1.946 0.147 2597.8 3875.5 -6.6 9.9
12# 39.462 124.9 10.0 3.251 ?0.236 0.085 2343.0 3730.3 ?3.5 5.6
13# 39.870 207.9 10.0 2.811 ?0.519 0.078 2044.4 3495.6 ?2.8 4.8
14# 40.156 319.6 12.5 1.822 ?1.026 0.038 1836.4 3170.2 ?1.2 2.1
Tab.1 Length correction of top and bottom plate of small-segment steel box girder (first span large-segment)
节段 $H_{i{{ - } }1}^{\text{E} }$/m $ H_i^{\text{E}} $/m $\varDelta _{i - 1}^i$/mm $\varDelta _i^i$/mm ${L_{i,{\text{p}}}}$/m $\delta _{i - 1,i}^0$/(°)  ${\xi' _{i - 1,i} }$/(°) ${h_{i - 1,{\text{t}}}}$/mm  ${h_{i - 1,{\text{b}}}}$/mm  ${d'_{i - 1,{\text{t} } } }$/mm  ${d'_{i - 1,{\text{b} } } }$/mm 
14# 40.078 40.476 ?166.8 ?255.2 12.5
15# 40.589 40.998 ?368.1 ?395.0 12.5 0.3507 ?0.0207 1800.4 2699.6 0.7 ?1.0
19# 41.778 41.871 ?395.8 ?369.5 12.5
20# 41.766 41.865 ?265.6 ?174.0 12.5 0.3507 ?0.0206 1800.4 2699.6 0.6 ?1.0
Tab.2 Length correction of top and bottom plate at large-segment joints
Fig.9 Exact matching of large-segment end faces
Fig.10 Elevation errors of main girder
mm
钢箱梁节段 ${l_{\text{N}}}$ ${l_{\text{m}}}$ ${l_{\text{t}}}$ ${l_{\text{b}}}$ $\Delta l$
第1跨大节段 152 654.6 152 664.9 152 678.3 152 655.5 23.7
第2跨大节段 64 013.8 64 014.9 64 001.8 64 034.5 20.7
第3跨大节段 151 205.4 151 211.7 151 217.0 151 189.8 15.6
全桥钢箱梁节段 367 873.8 367 891.4 367 897.1 367 879.8 23.3
Tab.3 Length of girder centroid after cutting
Fig.11 Datum length of segment cutting in common method
[1]   向木生, 张世飙, 张开银, 等 大跨度预应力混凝土桥梁施工控制技术[J]. 中国公路学报, 2002, 15 (4): 38- 42
XIANG Mu-sheng, ZHANG Shi-biao, ZHANG Kai-yin, et al Control technique for construction of long span prestressed concrete bridge[J]. China Journal of Highway and Transport, 2002, 15 (4): 38- 42
[2]   WANG J F, WU T M, ZHANG J T, et al Refined analysis and construction parameter calculation for full-span erection of the continuous steel box girder bridge with long cantilevers[J]. Journal of Zhejiang University: Science A, 2020, 21 (4): 268- 279
doi: 10.1631/jzus.A1900322
[3]   张建民, 肖汝诚 千米级斜拉桥施工过程中主梁的预转折角研究[J]. 计算力学学报, 2005, 22 (5): 618- 622
ZHANG Jian-min, XIAO Ru-cheng Study on the prearranged angle of girders in construction state for a thousand-meter scale cable-stayed bridge[J]. Chinese Journal of Computational Mechanics, 2005, 22 (5): 618- 622
[4]   陈常松, 颜东煌, 陈政清 超大跨度斜拉桥的自适应无应力构形控制法[J]. 中外公路, 2008, 28 (1): 64- 67
CHEN Chang-song, YAN Dong-huang, CHEN Zheng-qing Construction control of self-adaptive zero-stress configure for super long-span cable-stayed bridge[J]. Journal of China and Foreign Highway, 2008, 28 (1): 64- 67
[5]   梁鹏, 肖汝诚, 徐岳 超大跨度斜拉桥的安装构形与无应力构形[J]. 长安大学学报: 自然科学版, 2006, 26 (4): 49- 53
LIANG Peng, XIAO Ru-cheng, XU Yue Assembled geometry and unstrained geometry of super long span cable-stayed bridges[J]. Journal of Chang’an University: Natural Science Edition, 2006, 26 (4): 49- 53
[6]   李乔, 唐亮. 悬臂拼装桥梁制造与安装线形的确定[C]// 第十六届全国桥梁学术会议论文集: 下册. 北京: 人民交通出版社, 2004: 297-302.
LI Qiao, TANG Liang. Determination of fabricated geometry and assembled geometry of cantilever erection bridge [C]// The 16th National Bridge Academic Symposium: Volume 2. Beijing: China Communications Press, 2004: 297-302.
[7]   谢明志, 杨永清, 卜一之, 等 千米级混合梁斜拉桥双目标控制施工监控体系[J]. 西南交通大学学报, 2018, 53 (2): 244- 252
XIE Ming-zhi, YANG Yong-qing, BU Yi-zhi, et al Construction control system for thousand-meter-scale hybrid girder cable-stayed bridge based on double target control[J]. Journal of Southwest Jiaotong University, 2018, 53 (2): 244- 252
[8]   刘德清, 王文洋 大跨径钢-混混合梁连续刚构桥施工控制关键技术[J]. 桥梁建设, 2021, 51 (1): 121- 129
LIU De-qing, WANG Wen-yang Key construction control techniques for long-span continuous rigid-frame bridge with steel-concrete hybrid girders[J]. Bridge Constructio, 2021, 51 (1): 121- 129
[9]   秦顺全 斜拉桥安装无应力状态控制法[J]. 桥梁建设, 2003, 32 (2): 31- 34
Qin Shun-quan Control method of stress-free status for erection of cable-stayed bridges[J]. Bridge Construction, 2003, 32 (2): 31- 34
[10]   YIU P K A, BROTTON D M Computation of fabrication dimensions for cable-stayed bridges[J]. The Structural Engineer, 1988, 66 (15): 237- 243
[11]   董道福, 陈常松, 颜东煌, 等 单元解体法精确求解梁元无应力构形[J]. 湖南大学学报:自然科学版, 2016, 43 (11): 112- 119
DONG Dao-fu, CHEN Chang-song, YAN Dong-huang, et al Accurate solution for unstressed configuration of beam by element disintegration theory[J]. Journal of Hunan University: Natural Sciences, 2016, 43 (11): 112- 119
[12]   LI C X, HE J, DONG C W, et al Control of self-adaptive unstressed configuration for incrementally launched girder bridges[J]. Journal of Bridge Engineering, 2015, 20 (10): 04014105
doi: 10.1061/(ASCE)BE.1943-5592.0000709
[13]   李传习, 王琛, 董创文, 等 基于相位变换的顶推曲梁桥自适应无应力构形控制[J]. 中国公路学报, 2014, 27 (2): 45- 53
LI Chuan-xi, WANG Chen, DONG Chuang-wen, et al Control of self-adaptive unstressed configuration for incrementally launched curved girder bridge based on phase transformation[J]. China Journal of Highway and Transport, 2014, 27 (2): 45- 53
[14]   李传习, 周群, 董创文 顶推钢箱梁的梁段制造构形与无应力线形实现[J]. 公路交通科技, 2018, 35 (5): 40- 48
LI Chuan-xi, ZHOU Qun, DONG Chuang-wen Fabrication configuration and unstressed geometry achievement of beam segment of incrementally launched steel box girder[J]. Journal of Highway and Transportation Research and Development, 2018, 35 (5): 40- 48
[15]   赵雷, 贾少敏, 杨兴旺 悬拼施工中钢箱梁制造尺寸的确定[J]. 西南交通大学学报, 2014, 49 (5): 754- 759
ZHAO Lei, JIA Shao-min, YANG Xing-wang Determination of fabrication dimensions of steel box girders in cantilever construction[J]. Journal of Southwest Jiaotong University, 2014, 49 (5): 754- 759
[16]   陈太聪, 苏成 桥梁悬臂拼装施工中钢箱梁制造尺寸的确定[J]. 中国公路学报, 2011, 24 (4): 50- 56
CHEN Tai-cong, SU Cheng Determination of fabrication dimensions of steel box girders in cantilever erection construction of bridge[J]. China Journal of Highway and Transport, 2011, 24 (4): 50- 56
[17]   KIM D, KWAK Y, SOHN H Accelerated cable-stayed bridge construction using terrestrial laser scanning[J]. Automation in Construction, 2020, 117: 103269
doi: 10.1016/j.autcon.2020.103269
[18]   WANG J F, XIANG H W, ZHANG J T, et al Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation[J]. Journal of Zhejiang University: Science A, 2020, 21 (5): 382- 391
[19]   王凌波, 刘鹏, 李源, 等 宽幅钢箱梁斜拉桥悬拼匹配技术研究[J]. 中国公路学报, 2016, 29 (12): 102- 108
WANG Ling-bo, LIU Peng, LI Yuan, et al Research on matching technology in cantilever erection for wide steel box girder of cable-stayed bridge[J]. China Journal of Highway and Transport, 2016, 29 (12): 102- 108
[1] Jin-feng WANG,Tian-mei WU,Jian-jiang WANG,Min-quan WANG,Rong-qiao XU. Analysis of transverse separated-block construction effects of steel box girders based on partial shear theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1380-1388.
[2] YE Xiao-wei, LIU Tan, DONG Chuan-zhi, CHEN Bin. Structural damage detection based on Kalman filter and neutral axis location[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2012-2018.
[3] XIE Xu, TUN Dong-Yan, WANG Jian-Feng, et al. Dynamical behavior of steel box girder bridges due to vehicle-induced vibration at expansion joint[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(10): 1923-1930.