Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (10): 2012-2018    DOI: 10.3785/j.issn.1008-973X.2017.10.016
Civil Engineering, Transportation Engineering     
Structural damage detection based on Kalman filter and neutral axis location
YE Xiao-wei, LIU Tan, DONG Chuan-zhi, CHEN Bin
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download:   PDF(1803KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The computational principle of the neutral axis location of bending beam was presented based on the theory of material mechanics. The relationship between the neutral axis location and the strain levels of the upper and bottom surfaces of the beam was derived. The wavelet multi-resolution analysis method was used to remove the temperature-induced component of long-term strain monitoring data. The Kalman filter method was used for the de-noising process of the strain data. The variation of the neutral axis location was obtained based on the de-noised strain data for the damage judgment. Results show that the wavelet multi-resolution analysis method can handle the task of multi-component strain signal decomposition. The Kalman filter method can effectively reduce the adverse effect of the noise on the determination of the neutral axis location. The results obtained by the neutral axis location-based structural damage detection with the integration of wavelet multi-resolution analysis and Kalman filter method are more reliable than those directly calculated by use of the strain data.



Received: 14 September 2016      Published: 27 September 2017
CLC:  U441  
Cite this article:

YE Xiao-wei, LIU Tan, DONG Chuan-zhi, CHEN Bin. Structural damage detection based on Kalman filter and neutral axis location. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 2012-2018.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.10.016     OR     http://www.zjujournals.com/eng/Y2017/V51/I10/2012


基于卡尔曼滤波和中性轴位置的结构损伤识别

根据材料力学理论对受弯梁中性轴位置的计算原理进行描述,导出中性轴位置与梁的上、下表面应变水平的关系式.采用小波多分辨率分析方法,去除长期应变监测数据中由温度引起的应变组分.采用卡尔曼滤波方法对应变数据进行降噪处理,基于降噪之后的应变数据得到中性轴位置的变化情况,并用于损伤判定.研究结果表明:采用小波多分辨率分析方法可以完成多组分应变信号的分解任务,采用卡尔曼滤波方法可以有效降低噪声对中性轴位置确定的不利影响,结合小波多分辨率分析和卡尔曼滤波方法的基于中性轴位置的结构损伤识别结果比直接运用应变数据计算得到的结果更加可靠.

[1] 张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,2001,29(1):65-69. ZHANG Qi-wei. Conception of long-span bridge health monitoring and monitoring system design[J]. Journal of Tongji University, 2001, 29(1):65-69.
[2] NI Y Q, YE X W, KO J M. Monitoring-based fatigue reliability assessment of steel bridges:analytical model and application[J]. Journal of Structural Engineering, 2010, 136(12):1563-1573.
[3] YE X W, NI Y Q, WONG K Y, et al. Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data[J]. Engineering Structures, 2012, 45:166-176.
[4] NI Y Q, YE X W, KO J M. Modeling of stress spectrum using long-term monitoring data and finite mixture distributions[J]. Journal of Engineering Mechanics, 2012, 138(2):175-183.
[5] HOUSNER G W, BERGMAN L A, CAUGHEY T K, et al. Structural control past present and future[J]. Journal of Engineering Mechanics, 1997, 123(9):897-971.
[6] 杨秋伟.基于振动的结构损伤识别方法研究进展[J].振动与冲击,2007,26(10):86-100. YANG Qiu-wei. A review of vibration-based structural damage identification methods[J]. Journal of Vibration and Shock, 2007, 26(10):86-100.
[7] 宗周红,钟儒勉,郑沛娟,等.基于健康监测的桥梁结构损伤预后和安全预后研究进展及挑战[J].中国公路学报,2014, 27(12):46-57. ZONG Zhou-hong, ZHONG Ru-mian, ZHENG Pei-juan, et al. Damage and safety prognosis of bridge structures based on structural health monitoring:progress and challenges[J]. China Journal of Highway and Transport, 2014, 27(12):46-57.
[8] SIGURDARDOTTIR D H, GLISIC B. The neutral axis location for structural health monitoring:an overview[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5):703-713.
[9] PLUDE S, CHRISTENSON R, DEWOLF J, et al. Quantifying damage measures for a composite steel girder bridge using finite element analysis[C]//Structural Health Monitoring 2011:Condition-Based Maintenance and Intelligent Structures. Palo Alto:StanfordUniversity, 2013:1831-1838.
[10] O'BRIEN E J, KEOGH D L. A discussion on neutral axis location in bridge deck cantilevers[J]. Computers and Structures, 1999, 73(1-5):295-301.
[11] GANGONE M V, WHELAN M J, JANOYAN K D, et al. Development of performance assessment tools for a highway bridge resulting from controlled progressive monitoring[J]. Structure and Infrastructure Engineering, 2014, 10(5):551-567.
[12] XIA H W. SHM-based condition assessment ofin-service bridge structures using strain measurement[D]. Hong Kong:The Hong Kong Polytechnic University, 2011.
[13] NI Y Q, XIA H W, KO J M. In-service conditionassessment of bridge deck using long-term monitoring data of strain response[J]. Journal of Bridge Engineering, 2012, 17(6):876-885.
[14] 杨晓楠,唐和生,陈镕,等.钢结构损伤识别中Db族小波函数选择[J].同济大学学报:自然科学版,2006,34(12):1568-1572. YANG Xiao-nan, TANG He-sheng, CHEN Rong, et al. Selection on Db's family wavelet functions in steel structural damage identification[J]. Journal of Tongji University:Natural Science, 2006, 34(12):1568-1572.
[15] 孙继平,李晨鑫.基于卡尔曼滤波和指纹定位的矿井TOA定位方法[J].中国矿业大学学报,2014,43(6):1127-1133. SUN Ji-ping, LI Chen-xin. Mine time of arrival positioning method based on Kalman filtering and fingerpint positioning[J]. Journal of China University of Mining and Technology, 2014, 43(6):1127-1133.
[16] 杨兆升,朱中.基于卡尔曼滤波理论的交通流量实时预测模型[J].中国公路学报,1999,12(3):63-67. YANG Zhao-sheng, ZHU Zhong. A real-time traffic volume prediction model based on the Kalman filtering theory[J]. China Journal of Highway and Transport, 1999, 12(3):63-67.
[17] DING F, LIU X M, MA X Y. Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition[J]. Journal of Computational and Applied Mathematics, 2016, 301:135-143.
[18] 于滨,杨忠振,曾庆成.基于SVM和Kalman滤波的公交车到站时间预测模型[J].中国公路学报,2008,21(2):89-92. YU Bin, YANG Zhong-zhen, ZENG Qing-cheng. Bus arrival time prediction model based on support vector machine and Kalman filter[J]. China Journal of Highway and Transport, 2008, 21(2):89-92.

[1] LI Ming, LIU Yang, YANG Xing-sheng. Random vehicle flow load effect considering axle load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 78-88.
[2] CHEN Jia-Yi, XIE Xu, XU Ai-Min, et al. Study of tendon anchorage zones of long-span post-tensioned prestressed concrete box girder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1077-1082.