|
|
Model interactive modification method based on improved quantum genetic algorithm |
Sheng-tao XIANG1( ),Da WANG1,2,*( ) |
1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China 2. School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China |
|
|
Abstract A static multi-scale finite element model interactive modification method based on improved quantum genetic algorithm was proposed aiming at the disadvantages of traditional finite element model modification methods, which are low efficiency, high cost and easy to fall into local extremums. The quantum bit vector states were encoded by real numbers according to the quantum computing theory, and the rotation angle was adaptatively updated by improving the quantum revolving gate. The improved quantum genetic algorithm was designed by introducing the quantum global interference crossover, mutation, catastrophe and other genetic operations. A multi-scale finite element model was established with a steel-concrete composite girder bridge as the engineering background. The objective function was established, the correction region was partitioned, and the maximum mutual information coefficient was used to screen the parameters and obtain the weight of the objective function. The interactive modification of static multi-scale finite element model based on improved quantum genetic algorithm was realized by Python language. Results show that the improved quantum genetic algorithm has higher performance and accuracy than the traditional genetic algorithm and quantum genetic algorithm, and the automatic interactive modification method is more efficient. The modification of material elastic modulus, thickness, vehicle load and other parameters accorded with the actual engineering test. The deflection error was reduced to 1.4%-14.3%, the stress error of concrete floor was reduced to 2.6%-18.8%, and the stress error of steel beam was reduced to 0%-11.1% compared with the initial finite element calculation.
|
Received: 12 June 2021
Published: 05 January 2022
|
|
Fund: 国家自然科学基金资助项目(51878072);湖南省研究生科研创新资助项目(CX20190661);湖南省科技创新计划资助项目(2020RC4049) |
Corresponding Authors:
Da WANG
E-mail: 18390869644@163.com;yxwang2006@yeah.net
|
基于改进量子遗传算法的模型交互修正方法
针对传统有限元模型修正方法低效率、高成本且易陷入局部极值的缺点,提出基于改进量子遗传算法的静力多尺度有限元模型交互修正方法. 依据量子计算理论,对量子比特矢量态进行实数编码,以改进量子旋转门实现旋转角自适应更新,引入量子全局干扰交叉、变异、灾变等遗传操作,设计改进量子遗传算法. 以某钢-混组合梁桥为工程背景建立多尺度有限元模型,建立目标函数,对待修正区域进行分块处理. 利用最大互信息系数对待修正参数进行筛选,给出目标函数权重,通过Python语言实现了基于改进量子遗传算法的静力多尺度有限元模型交互修正. 结果表明,改进量子遗传算法相较于传统遗传算法、量子遗传算法具有更高的性能与精度,自动交互修正方法的效率较高,对材料弹性模量、厚度、车辆荷载等参数的修正与工程实际测试的情况基本吻合,目标函数修正结果相较于有限元计算的初始值,挠度误差降低至1.4%~14.3%,混凝土底板应力误差降低至2.6%~18.8%,钢梁应力误差降低至0%~11.1%.
关键词:
桥梁工程,
钢-混组合梁,
改进量子遗传算法,
实桥试验,
模型交互修正
|
|
[1] |
BENEDETTINI F, GENTILE C Operational modal testing and FE model tuning of a cable-stayed bridge[J]. Engineering Structures, 2011, 33 (6): 2063- 2073
doi: 10.1016/j.engstruct.2011.02.046
|
|
|
[2] |
梁鹏, 李斌, 王秀兰, 等 基于桥梁健康监测的有限元模型修正研究现状与发展趋势[J]. 长安大学学报:自然科学版, 2014, 34 (4): 52- 61 LIANG Peng, LI Bin, WANG Xiu-lan, et al Present research status and development trend of finite element model updating based on bridge health monitoring[J]. Journal of Chang’an University: Natural Science Edition, 2014, 34 (4): 52- 61
doi: 10.3969/j.issn.1671-8879.2014.04.009
|
|
|
[3] |
秦世强, 胡佳, 曹鸿猷, 等 基于试验数据的大跨度拱桥有限元模型修正[J]. 中国公路学报, 2019, 32 (7): 66- 76 QIN Shi-qiang, HU Jia, CAO Hong-you, et al Finite element model updating of large-span arch bridge based on experimental data[J]. China Journal of Highway and Transport, 2019, 32 (7): 66- 76
|
|
|
[4] |
DENG L, CAI C S Bridge model updating using response surface method and genetic algorithm[J]. Journal of Bridge Engineering, 2010, 15 (5): 553- 564
doi: 10.1061/(ASCE)BE.1943-5592.0000092
|
|
|
[5] |
方志, 唐盛华, 张国刚, 等 基于多状态下静动态测试数据的斜拉桥模型修正[J]. 中国公路学报, 2011, 24 (1): 34- 41 FANG Zhi, TANG Sheng-hua, ZHANG Guo-gang, et al Cable-stayed bridge model updating based on static and dynamic test data of multi-state[J]. China Journal of Highway and Transport, 2011, 24 (1): 34- 41
doi: 10.3969/j.issn.1001-7372.2011.01.006
|
|
|
[6] |
JAISHI B, REN W X Structural finite element model updating using ambient vibration test results[J]. Journal of Structural Engineering, 2005, 131 (4): 617- 628
doi: 10.1061/(ASCE)0733-9445(2005)131:4(617)
|
|
|
[7] |
REN W X, CHEN H B Finite element model updating in structural dynamics by using the response surface method[J]. Engineering Structures, 2010, 32 (8): 2455- 2465
doi: 10.1016/j.engstruct.2010.04.019
|
|
|
[8] |
马印平, 刘永健, 刘江 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32 (11): 51- 61 MA Yin-ping, LIU Yong-jian, LIU Jiang Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal of Highway and Transport, 2019, 32 (11): 51- 61
|
|
|
[9] |
XING X, LIU Y, GARG A, et al An improved genetic algorithm for determining modified water-retention model for biochar-amended soil[J]. Catena, 2021, 200 (3): 105143
|
|
|
[10] |
HAN J K Quantum-inspired evolutionary algorithms with a new termination criterion, H ε gate, and two-phase scheme[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (2): 156- 169
doi: 10.1109/TEVC.2004.823467
|
|
|
[11] |
DAS A K, PRATIHAR D K Solving engineering optimization problems using an improved real-coded genetic algorithm (IRGA) with directional mutation and crossover[J]. Soft Computing, 2021, 25 (7): 5455- 5481
doi: 10.1007/s00500-020-05545-9
|
|
|
[12] |
邢焕来, 潘炜, 邹喜华 一种解决组合优化问题的改进型量子遗传算法[J]. 电子学报, 2007, 35 (10): 1999- 2002 XING Huan-lai, PAN Wei, ZOU Xi-hua A novel improved quantum genetic algorithm for combinatorial optimization problems[J]. Acta Electronica Sinica, 2007, 35 (10): 1999- 2002
doi: 10.3321/j.issn:0372-2112.2007.10.034
|
|
|
[13] |
熊焰, 陈欢欢, 苗付友, 等 一种解决组合优化问题的量子遗传算法QGA[J]. 电子学报, 2004, 32 (11): 1855- 1858 XIONG Yan, CHEN Huan-huan, MIAO Fu-you, et al A quantum genetic algorithm to solve combinatorial optimization problem[J]. Acta Electronica Sinica, 2004, 32 (11): 1855- 1858
doi: 10.3321/j.issn:0372-2112.2004.11.022
|
|
|
[14] |
DIVINCENZO D P Two-bit gates are universal for quantum computation[J]. Physical Review A, 1995, 51 (2): 1015- 1022
doi: 10.1103/PhysRevA.51.1015
|
|
|
[15] |
李士勇, 李盼池 基于实数编码和目标函数梯度的量子遗传算法[J]. 哈尔滨工业大学学报, 2006, 38 (8): 1216- 1218 LI Shi-yong, LI Pan-chi Quantum genetic algorithm based on real encoding and gradient information of object function[J]. Journal of Harbin Institute of Technology, 2006, 38 (8): 1216- 1218
doi: 10.3321/j.issn:0367-6234.2006.08.002
|
|
|
[16] |
何新贵, 梁久祯 利用目标函数梯度的遗传算法[J]. 软件学报, 2001, 12 (7): 33- 38 HE Xin-gui, LIANG Jiu-zhen Genetic algorithms using gradients of object functions[J]. Journal of Software, 2001, 12 (7): 33- 38
|
|
|
[17] |
祁正萍, 孙合明 一种改进的量子遗传算法[J]. 科学技术与工程, 2012, 12 (12): 2835- 2839 QI Zheng-ping, SUN He-ming An improved quantum genetic algorithm[J]. Science Technology and Engineering, 2012, 12 (12): 2835- 2839
doi: 10.3969/j.issn.1671-1815.2012.12.014
|
|
|
[18] |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524
doi: 10.1126/science.1205438
|
|
|
[19] |
LI X F, NI Y Q, WONG K Y, et al Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge[J]. Smart Structures and Systems, 2015, 15 (1): 99- 117
doi: 10.12989/sss.2015.15.1.099
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|