|
|
Regional difference of value taking of effective temperature for steel-concrete composite girder bridges |
Zhi-yuan MA1( ),Jiang LIU1,2,Yong-jian LIU1,2,*( ),Yi LYU1,Guo-jing ZHANG1 |
1. School of Highway, Chang’an University, Xi’an 710064, China 2. Research Center of Highway Large Structure Engineering on Safety of Ministry of Education, Xi’an 710064, China |
|
|
Abstract A long-term field test was carried out on a segmental model of steel box concrete composite girder, and the accuracy of numerical simulation of temperature field was verified based on the measured data, in order to study the accurate value of effective temperature of composite girder bridges in different areas. The effective temperature samples were obtained by finite element method and meteorological correlation formula, and the representative values of effective temperature were calculated and compared based on generalized Pareto (GP) distribution model. 839 reference weather stations in China were investigated, and 91 stations with solar radiation data were simulated for 23 years. Furthermore, the correlation formula between effective temperature, air temperature and solar radiation was established. The contour map of effective temperatures was drawn by spatial interpolation method. Results show that the highest effective temperature ranges from 20.56 ℃ to 51.99 ℃, the lowest effective temperature ranges from ?42.94 ℃ to 15.81 ℃, and the effective temperature range ranges from 26.16 ℃ to 87.57 ℃. In the contour map, the effective temperature range in about 1/7 of the national area exceeds the maximum value of 71 ℃ specified by the current codes, which brings great risks to the safe operation of bridges.
|
Received: 02 December 2021
Published: 31 May 2022
|
|
Fund: 国家自然科学基金资助项目(52108111);中国博士后科学基金资助项目(2021M692747);青海省重点研发与转化计划(2021-SF-166);长安大学中央高校基本科研业务费专项资金资助项目(300102212102) |
Corresponding Authors:
Yong-jian LIU
E-mail: 542787523@qq.com;liuyongjian@chd.edu.cn
|
钢-混组合梁桥有效温度取值的地域差异性
为了研究不同地区组合梁桥有效温度的精确取值,对钢箱混凝土组合梁节段模型开展长期温度测试,基于实测数据验证数值模拟温度场的准确性. 采用有限元和气象相关性公式2种方法得到有效温度样本数据,基于广义帕累托(GP)分布模型计算有效温度代表值并进行对比. 调研中国839个基准气象站数据,对其中91个具有太阳辐射数据的站点进行23 a长期数值模拟,并逐个站点建立有效温度与气温和太阳辐射2个气象参数之间的相关性公式. 采用空间插值方法得到有效温度全国等值线地图. 结果表明:全国范围内组合梁桥最高有效温度为20.56~51.99 ℃,最低有效温度为?42.94~15.81 ℃,有效温度变化为26.16~87.57 ℃,在等值线地图中,约占全国面积的1/7的区域的有效温度变化超过规范中最大值71 ℃,给桥梁的安全运营带来较大风险.
关键词:
桥梁工程,
有效温度,
气象相关性,
钢-混凝土组合梁,
地域差异性,
等温图
|
|
[1] |
ROEDER C W. Thermal movement design procedure for steel bridges [R]. Washington, D. C.: American Iron and Steel Institute, 1998.
|
|
|
[2] |
ROEDER C W. Thermal movement design procedure for concrete bridges [R]. Washington, D. C.: National Research Council, 2002.
|
|
|
[3] |
刘永健, 刘江, 张宁, 等 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17 (4): 9- 19 LIU Yong-jian, LIU Jiang, ZHANG Ning, et al Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 9- 19
doi: 10.3969/j.issn.1671-1637.2017.04.002
|
|
|
[4] |
刘永健, 刘江, 张宁 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52 (5): 59- 78 LIU Yong-jian, LIU Jiang, ZHANG Ning Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52 (5): 59- 78
|
|
|
[5] |
刘江, 刘永健, 白永新, 等 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33 (3): 73- 84 LIU Jiang, LIU Yong-jian, BAI Yong-xin, et al Study on regional difference and zoning of the temperature gradient pattern of concrete box girder[J]. China Journal of Highway and Transport, 2020, 33 (3): 73- 84
doi: 10.3969/j.issn.1001-7372.2020.03.007
|
|
|
[6] |
中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60—2015 [S]. 北京: 人民交通出版社, 2015.
|
|
|
[7] |
British Standards Institution. Steel, concrete and composite bridges part2. specification for loads: BS5400 [S]. London: British Standards Institution, 1978.
|
|
|
[8] |
European Committee for Standardization. Actions on structures, part1-5: general actions-thermal actions: Eurocode 1 [S]. Brussels: European Committee for Standardization, 1991.
|
|
|
[9] |
American Association of State Highway and Transportation Officials. AASHTO LRFD Bridge Design Specification [S]. Washington, D. C.: American Association of State Highway and Transportation Officials, 2012.
|
|
|
[10] |
戴公连, 唐宇, 梁金宝 基于广义帕累托分布的桥墩温度荷载极值研究[J]. 桥梁建设, 2017, 47 (6): 48- 53 DAI Gong-lian, TANG Yu, LIANG Jin-bao Study of temperature load extreme value of a bridge pier based on generalized pareto distribution[J]. Bridge Construction, 2017, 47 (6): 48- 53
doi: 10.3969/j.issn.1003-4722.2017.06.009
|
|
|
[11] |
张欢, 吴二军 考虑参数更新的大跨桥梁温差极值分布估计方法研究[J]. 工程力学, 2017, 34 (3): 124- 130 ZHANG Huan, WU Er-jun Statistical model estimation of extreme temperature gradient of long-span bridges combined parameter updating[J]. Engineering Mechanics, 2017, 34 (3): 124- 130
doi: 10.6052/j.issn.1000-4750.2015.08.0717
|
|
|
[12] |
史道济. 实用极值统计方法[M]. 天津: 天津科学技术出版社, 2006.
|
|
|
[13] |
CHEN Q. Effects of thermal loads on Texas steel bridges [D]. Austin: University of Texas at Austin, 2008.
|
|
|
[14] |
LIU J, LIU Y J, ZHANG G J, et al Predicted formula for temperature gradient of concrete-filled steel tubular member with an arbitrary inclination[J]. Journal of Bridge Engineering, 2020, 25 (10): 04020076
doi: 10.1061/(ASCE)BE.1943-5592.0001599
|
|
|
[15] |
刘江, 刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用(Ⅰ): 作用模式与极值分析[EB/OL]. [2021-11-15]. http://kns.cnki.net/kcms/detail/61.1313.U.20211015.1130.002.html. LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Temperature gradient action of steel-concrete composite girder bridge (I): action pattern and extreme value analysis[EB/OL]. [2021-11-15]. http://kns.cnki.net/kcms/detail/61.1313.U.20211015.1130.002.html.
|
|
|
[16] |
刘江, 刘永健, 房建宏, 等 高原高寒地区“上”形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17 (4): 32- 44 LIU Jiang, LIU Yong-jian, FANG Jian-hong, et al Vertical temperature gradient patterns of 上-shaped steel-concrete composite girder in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 32- 44
|
|
|
[17] |
AU F T K, THAM L G, TONG M Design thermal loading for steel bridges in Hong Kong[J]. Transactions Hong Kong Institution of Engineers, 2001, 2 (2): 1- 9
|
|
|
[18] |
HOTTEL H C A simple model for estimating the transmittance of direct solar radiation through clear atmospheres[J]. Solar Energy, 1976, 18 (2): 129- 134
|
|
|
[19] |
LIU B Y H, JORDAN R C The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960, 4 (3): 1- 19
doi: 10.1016/0038-092X(60)90062-1
|
|
|
[20] |
高宇. 港珠澳大桥青州航道桥扁平钢箱梁温度场分析[D]. 西安: 长安大学, 2015. GAO Yu. Qingzhou channel bridge of the Hong Kong, Zhuhai and Macao bridge flat steel box girder temperature field analysis[D]. Xi’an: Chang’an University, 2015.
|
|
|
[21] |
国家气象科学数据中心[EB/OL]. [2019-11-18]. http://data.cma.cn/, 1993-01-01/2015-01-01.
|
|
|
[22] |
张青雯, 崔宁博, 冯禹, 等 基于气象资料的日辐射模型在中国西北地区适用性评价[J]. 农业工程学报, 2018, 34 (2): 189- 196 ZHANG Qing-wen, CUI Ning-bo, FENG Yu, et al Evaluation on applicability of daily solar radiation model in Northwest China based on meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (2): 189- 196
doi: 10.11975/j.issn.1002-6819.2018.02.026
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|