Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 909-919    DOI: 10.3785/j.issn.1008-973X.2022.05.008
    
Regional difference of value taking of effective temperature for steel-concrete composite girder bridges
Zhi-yuan MA1(),Jiang LIU1,2,Yong-jian LIU1,2,*(),Yi LYU1,Guo-jing ZHANG1
1. School of Highway, Chang’an University, Xi’an 710064, China
2. Research Center of Highway Large Structure Engineering on Safety of Ministry of Education, Xi’an 710064, China
Download: HTML     PDF(2940KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A long-term field test was carried out on a segmental model of steel box concrete composite girder, and the accuracy of numerical simulation of temperature field was verified based on the measured data, in order to study the accurate value of effective temperature of composite girder bridges in different areas. The effective temperature samples were obtained by finite element method and meteorological correlation formula, and the representative values of effective temperature were calculated and compared based on generalized Pareto (GP) distribution model. 839 reference weather stations in China were investigated, and 91 stations with solar radiation data were simulated for 23 years. Furthermore, the correlation formula between effective temperature, air temperature and solar radiation was established. The contour map of effective temperatures was drawn by spatial interpolation method. Results show that the highest effective temperature ranges from 20.56 ℃ to 51.99 ℃, the lowest effective temperature ranges from ?42.94 ℃ to 15.81 ℃, and the effective temperature range ranges from 26.16 ℃ to 87.57 ℃. In the contour map, the effective temperature range in about 1/7 of the national area exceeds the maximum value of 71 ℃ specified by the current codes, which brings great risks to the safe operation of bridges.



Key wordsbridge engineering      effective temperature      meteorological correlation      steel-concrete composite girder      regional difference      contour map     
Received: 02 December 2021      Published: 31 May 2022
CLC:  U 448  
Fund:  国家自然科学基金资助项目(52108111);中国博士后科学基金资助项目(2021M692747);青海省重点研发与转化计划(2021-SF-166);长安大学中央高校基本科研业务费专项资金资助项目(300102212102)
Corresponding Authors: Yong-jian LIU     E-mail: 542787523@qq.com;liuyongjian@chd.edu.cn
Cite this article:

Zhi-yuan MA,Jiang LIU,Yong-jian LIU,Yi LYU,Guo-jing ZHANG. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 909-919.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.008     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/909


钢-混组合梁桥有效温度取值的地域差异性

为了研究不同地区组合梁桥有效温度的精确取值,对钢箱混凝土组合梁节段模型开展长期温度测试,基于实测数据验证数值模拟温度场的准确性. 采用有限元和气象相关性公式2种方法得到有效温度样本数据,基于广义帕累托(GP)分布模型计算有效温度代表值并进行对比. 调研中国839个基准气象站数据,对其中91个具有太阳辐射数据的站点进行23 a长期数值模拟,并逐个站点建立有效温度与气温和太阳辐射2个气象参数之间的相关性公式. 采用空间插值方法得到有效温度全国等值线地图. 结果表明:全国范围内组合梁桥最高有效温度为20.56~51.99 ℃,最低有效温度为?42.94~15.81 ℃,有效温度变化为26.16~87.57 ℃,在等值线地图中,约占全国面积的1/7的区域的有效温度变化超过规范中最大值71 ℃,给桥梁的安全运营带来较大风险.


关键词: 桥梁工程,  有效温度,  气象相关性,  钢-混凝土组合梁,  地域差异性,  等温图 
Fig.1 Segmental model of steel box composite girder
Fig.2 Measuring point arrangement of composite girder
Fig.3 Finite element model of steel box composite girder
材料 ρ/(kg?m?3) c/(J?kg?1?K?1) λ/(W?m?1?K?1) α ε
7850 460 55.000 0.50 0.80
混凝土 2300 900 3.000 0.40 0.85
空气 1.293 1000 0.027 ? ?
Tab.1 Thermal parameters of composite girder
Fig.4 Comparison between measured and FEM calculated effective temperature of composite girder
区域 省级行政区 基准气象站 常规气象站 辐射气象站 区域 省级行政区 基准气象站 常规气象站 辐射气象站
华北 北京 3 2 1 华中 河南 20 17 3
天津 3 2 1 湖北 32 30 2
山西 28 25 3 湖南 36 33 3
河北 21 20 1 华南 广东 37 35 2
内蒙古 48 46 2 广西 26 23 3
东北 辽宁 33 30 3 海南 8 5 3
吉林 29 27 2 香港 0 0 0
黑龙江 37 32 5 澳门 0 0 0
华东 上海 1 0 1 西南 重庆 12 11 1
江苏 24 21 3 四川 42 35 7
浙江 23 21 2 贵州 34 33 1
安徽 24 22 2 云南 34 29 5
福建 28 26 2 西藏 29 26 3
江西 26 24 2 西北 陕西 36 33 3
山东 23 20 3 甘肃 29 25 4
台湾 0 0 0 青海 35 30 5
? ? ? ? 宁夏 12 10 2
? ? ? ? 新疆 66 55 11
Tab.2 Distribution of reference weather stations in China
Fig.5 Comparison between measured total daily radiation and predicted value by Bahel model
类别 ns Ps
R2区间 [0.75, 0.80) 5 5.49
[0.80, 0.90) 41 45.05
[0.90, 1.00] 45 49.46
RMSE区间
(MJ·m?2)
[3.0, 4.7) 9 9.89
[2.0, 3.0) 62 68.13
[0, 2.0] 20 21.98
Tab.3 Applicability evaluation of Bahel model at 91 radiation weather stations in China
Fig.6 Historical meteorological data of Xining station in 23 years
Fig.7 Data of FEM for effective temperature of composite girder in 23 years
Fig.8 Calculation data of meteorological correlation formula for effective temperature of composite girder in 23 years
Fig.9 Comparison between effective temperature values of meteorological correlation formula and finite element model
数据来源 θe,max θe,min
23 a数值模
拟数据
23 a气象相
关数据
23 a数值模
拟数据
23 a气象相
关数据
20 a重现期 41.91 41.43 ?21.59 ?21.72
50 a重现期 42.54 42.31 ?22.33 ?22.27
原始数据极值 42.04 41.62 ?21.28 ?21.63
Tab.4 Representative values of effective temperature calculated from different data sources
影响因素 F
θe,max θe,min
hp 51.73 55.22
Bc 1.64 2.83
hc 43.91 66.85
hs 3.60 2.90
α 1.39 1.06
Tab.5 Variance analysis results of effective temperature influencing factors
Fig.10 Influence of deck and pavement thickness on effective temperature
Fig.11 Effective temperature box diagram of radiation meteorological station
Fig.12 Comparison of regional differences of effective temperature at radiation meteorological stations
Fig.13 Comparison between representative effective temperature values of finite element method and meteorological correlation formula
θe,max/℃ 分布地区 θe,min/℃ 分布地区
48~52 新疆中部及北部 ?43~?35 黑龙江、内蒙古、西藏西部、青海南部
44~48 北京天津周边、重庆、湖北北部、浙江、江西北部、陕西湖北交界处 ?35~?28 吉林、辽宁北部、新疆北部
40~44 黑龙江、吉林、辽宁、内蒙古、山西、山东、河南、安徽、湖南、福建、广东、广西、福建、四川东部、新疆南部及东部 ?28~?20 新疆南部、青海北部、西藏东部、甘肃、陕西北部、山西北部、四川北部
36~40 青海北部、甘肃北部、贵州、云南南部、江苏 ?20~?12 河北、山东、山西、陕西中部、宁夏
32~36 西藏西部、云南北部 ?12~?5 江苏、安徽、河南、陕西南部、四川南部、湖北
28~32 西藏中部及东部、四川西部 ?5~3 湖南、江西、浙江、福建、贵州、云南北部
24~28 西藏南部、四川北部 3~11 广东北部、广西、云南南部
20~24 西藏北部、青海南部 11~16 广东南部、海南、台湾
Tab.6 Distribution area of each effective temperature range
地区 θe,max/ ℃ θe,min/ ℃ θe,range/ ℃
严寒地区 39 ?32 71
寒冷地区 39 ?15 54
温热地区 39 ?6 (?1) 45 (40)
Tab.7 Effective temperature value of composite girder in general specifications[6] for design of highway bridges and culverts
[1]   ROEDER C W. Thermal movement design procedure for steel bridges [R]. Washington, D. C.: American Iron and Steel Institute, 1998.
[2]   ROEDER C W. Thermal movement design procedure for concrete bridges [R]. Washington, D. C.: National Research Council, 2002.
[3]   刘永健, 刘江, 张宁, 等 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17 (4): 9- 19
LIU Yong-jian, LIU Jiang, ZHANG Ning, et al Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 9- 19
doi: 10.3969/j.issn.1671-1637.2017.04.002
[4]   刘永健, 刘江, 张宁 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52 (5): 59- 78
LIU Yong-jian, LIU Jiang, ZHANG Ning Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52 (5): 59- 78
[5]   刘江, 刘永健, 白永新, 等 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33 (3): 73- 84
LIU Jiang, LIU Yong-jian, BAI Yong-xin, et al Study on regional difference and zoning of the temperature gradient pattern of concrete box girder[J]. China Journal of Highway and Transport, 2020, 33 (3): 73- 84
doi: 10.3969/j.issn.1001-7372.2020.03.007
[6]   中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60—2015 [S]. 北京: 人民交通出版社, 2015.
[7]   British Standards Institution. Steel, concrete and composite bridges part2. specification for loads: BS5400 [S]. London: British Standards Institution, 1978.
[8]   European Committee for Standardization. Actions on structures, part1-5: general actions-thermal actions: Eurocode 1 [S]. Brussels: European Committee for Standardization, 1991.
[9]   American Association of State Highway and Transportation Officials. AASHTO LRFD Bridge Design Specification [S]. Washington, D. C.: American Association of State Highway and Transportation Officials, 2012.
[10]   戴公连, 唐宇, 梁金宝 基于广义帕累托分布的桥墩温度荷载极值研究[J]. 桥梁建设, 2017, 47 (6): 48- 53
DAI Gong-lian, TANG Yu, LIANG Jin-bao Study of temperature load extreme value of a bridge pier based on generalized pareto distribution[J]. Bridge Construction, 2017, 47 (6): 48- 53
doi: 10.3969/j.issn.1003-4722.2017.06.009
[11]   张欢, 吴二军 考虑参数更新的大跨桥梁温差极值分布估计方法研究[J]. 工程力学, 2017, 34 (3): 124- 130
ZHANG Huan, WU Er-jun Statistical model estimation of extreme temperature gradient of long-span bridges combined parameter updating[J]. Engineering Mechanics, 2017, 34 (3): 124- 130
doi: 10.6052/j.issn.1000-4750.2015.08.0717
[12]   史道济. 实用极值统计方法[M]. 天津: 天津科学技术出版社, 2006.
[13]   CHEN Q. Effects of thermal loads on Texas steel bridges [D]. Austin: University of Texas at Austin, 2008.
[14]   LIU J, LIU Y J, ZHANG G J, et al Predicted formula for temperature gradient of concrete-filled steel tubular member with an arbitrary inclination[J]. Journal of Bridge Engineering, 2020, 25 (10): 04020076
doi: 10.1061/(ASCE)BE.1943-5592.0001599
[15]   刘江, 刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用(Ⅰ): 作用模式与极值分析[EB/OL]. [2021-11-15]. http://kns.cnki.net/kcms/detail/61.1313.U.20211015.1130.002.html.
LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Temperature gradient action of steel-concrete composite girder bridge (I): action pattern and extreme value analysis[EB/OL]. [2021-11-15]. http://kns.cnki.net/kcms/detail/61.1313.U.20211015.1130.002.html.
[16]   刘江, 刘永健, 房建宏, 等 高原高寒地区“上”形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17 (4): 32- 44
LIU Jiang, LIU Yong-jian, FANG Jian-hong, et al Vertical temperature gradient patterns of 上-shaped steel-concrete composite girder in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 32- 44
[17]   AU F T K, THAM L G, TONG M Design thermal loading for steel bridges in Hong Kong[J]. Transactions Hong Kong Institution of Engineers, 2001, 2 (2): 1- 9
[18]   HOTTEL H C A simple model for estimating the transmittance of direct solar radiation through clear atmospheres[J]. Solar Energy, 1976, 18 (2): 129- 134
[19]   LIU B Y H, JORDAN R C The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960, 4 (3): 1- 19
doi: 10.1016/0038-092X(60)90062-1
[20]   高宇. 港珠澳大桥青州航道桥扁平钢箱梁温度场分析[D]. 西安: 长安大学, 2015.
GAO Yu. Qingzhou channel bridge of the Hong Kong, Zhuhai and Macao bridge flat steel box girder temperature field analysis[D]. Xi’an: Chang’an University, 2015.
[21]   国家气象科学数据中心[EB/OL]. [2019-11-18]. http://data.cma.cn/, 1993-01-01/2015-01-01.
[22]   张青雯, 崔宁博, 冯禹, 等 基于气象资料的日辐射模型在中国西北地区适用性评价[J]. 农业工程学报, 2018, 34 (2): 189- 196
ZHANG Qing-wen, CUI Ning-bo, FENG Yu, et al Evaluation on applicability of daily solar radiation model in Northwest China based on meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (2): 189- 196
doi: 10.11975/j.issn.1002-6819.2018.02.026
[1] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[2] Wei JI,Tian-yan SHAO. Optimization analysis of double launching noses during launching construction of multi-span continuous girder bridge[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1289-1298.
[3] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[4] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[5] LI Ming, LIU Yang, YANG Xing-sheng. Random vehicle flow load effect considering axle load[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 78-88.
[6] ZHAO Ren-da, JIA Yi, ZHAN Yu-lin, WANG Yong-bao, LIAO Ping, LI Fu-hai, PANG Li-guo. Seismic mitigation and isolation design for multi-span and long-unit continuous girder bridge inmeizoseismal area[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 886-895.
[7] XIANG Yi-qiang, HE Chao-chao, QIU Zheng. Calculation of long-term slippage for externally prestressing steel-concrete composite beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 739-744.
[8] XIAO Xin hui, LU Nai wei, LIU Yang. Fatigue reliability assessment for highway steel bridges under stochastic traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1777-1783.
[9] XIANG Yi-qiang,LIU Cheng-xi,TANG Guo-bin,CHEN Xue-jiang,WU Tian-zhen. Modified STM model for calculating inclined section strength of
reinforcement concrete cap beam of single column pier
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1248-1254.
[10] FU Li-Wen, HONG Jin-Feng, CHENG Wei-Beng, XIANG Hua-Wei. Causes and treatments of quadrate concrete piers crack[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1738-1745.