An improved stochastic Green’s function method that using phase characteristics to simulate the directivity effect was proposed, in order to research the influence of the fault rupture process on the seismic response of seismic isolation bridges. Taking the fault conditions of the 1994 Northridge earthquake in the United States as an example, the effectiveness of the simulation method was verified by comparison with the actual seismic records. The improved stochastic Green's function method was used to simulate four groups of acceleration time histories with the same epicentral distance as the input conditions, and the effects of fault rupture process on the seismic response of seismic isolation bridges with the same epicentral distance and different directions were compared. Results show that the similarity between the duration envelope curve and the phase difference distribution can be used to simulate the acceleration time history of stochastic Green’s function conveniently. Under the same epicentral distance, the ground motion at the observation point in the fault rupture direction and the seismic response of the bridge structure at the corresponding position are significantly greater than those at the observation point in the non rupture direction. When the acceleration time history of ground motion in the rupture direction does not have pulse characteristics, the seismic response of seismic isolation bridges around the fault is mainly affected by the intensity of ground motion, and the influence of bridge orientation is not obvious.
Xu XIE,Wen-tong HUANG,Long-fei JI,Tian-jia WANG. Influence of fault rupture process on seismic responses of seismic isolation bridges. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2225-2233.
Fig.1Earthquake duration model of sub-fault rupture
Fig.2Phase difference spectrum and cumulative probability density distribution of small earthquake in sub-faust
Fig.3Stochastic Green function to simulate ground motion
Fig.4Fault and station location of Northridge earthquake
Fig.5Comparison and verification of simulation results of acceleration time history and response spectrum with actual records of three stations in Northridge earthquake
台站
实测/模拟
PGV/(cm·s?1)
PGA/(cm·s?2)
PGV/PGA/s
LV3
实测H1方向
8.43
82.53
0.10
LV3
实测H2方向
8.02
103.76
0.08
LV3
模拟
8.03
85.04
0.09
LV1
实测H1方向
7.81
87.14
0.09
LV1
实测H2方向
7.05
71.80
0.10
LV1
模拟
10.91
104.49
0.10
Tab.1PGV/PGA of station LV3 and LV1
Fig.6Bridge elevation layout
Fig.7Calculation model of bridge seismic response
Fig.8Observation location and simulation result of ground motion acceleration time history and response spectrum
Fig.9Displacement response of P4 pier top and hysteretic curve of E shape steel damper at P5 pier
Fig.10Adjusted ground motion of El Centro earthquake
${\rm{PGA} }$
$ 地震动 $
$|d^{{\rm{P4}}}_{{\rm{max}}}|$
$\eta ^{\rm{P5}}$
0.15g
El Centro
27.6
3.5
0.15g
15-2
21.7
2.5
0.15g
30-4
24.0
2.8
0.30g
El Centro
35.5
5.3
0.30g
15-3
26.2
3.8
0.30g
30-1
25.6
3.5
0.60g
El Centro
40.3
8.5
0.60g
15-1
43.9
10.2
Tab.2Comparison with displacement of pier top and plastic ratio of E shape steel damper under different seismic input
[1]
廖文义, 罗俊雄, 万绚. 隔震桥梁承受近断层地震之反应分析[J]. 地震工程与工程振动, 2001, 21(4): 102-108. LIAO Wen-yi, LUO Jun-xiong, WAN Xuan. Responses of isolated bridges subjected to near-fault ground motions [J], Earthquake Engineering and Engineering Vibration, 2001, 21(4): 102-108.
[2]
JONSSON M H, BESSASON B, HAFLIDASON E Earthquake response of a base-isolated bridge subjected to strong near-fault ground motion[J]. Soil Dynamics and Earthquake Engineering, 2010, 30 (6): 447- 455
doi: 10.1016/j.soildyn.2010.01.001
[3]
李小军, 贺秋梅, 亓兴军 地震动速度脉冲对大跨斜拉桥减震控制的影响[J]. 应用基础与工程科学学报, 2012, 20 (2): 272- 285 LI Xiao-jun, HE Qiu-mei, QI Xing-jun Seismic mitigation control effects of long-span cable-stayed bridges to ground motions with velocity pulse[J]. Journal of Basic Science and Engineering, 2012, 20 (2): 272- 285
doi: 10.3969/j.issn.1005-0930.2012.02.011
[4]
魏红一, 逯宗典, 王志强 近场简支梁铅芯橡胶支座隔震特性分析[J]. 同济大学学报:自然科学版, 2010, 38 (1): 39- 44 WEI Hong-yi, LU Zong-dian, WANG Zhi-qiang Isolation characteristic analysis of simple supported bridge to near fault ground motions[J]. Journal of Tongji University: Natural Science, 2010, 38 (1): 39- 44
[5]
ZHONG J, JIANG L W, PANG Y T, et al Near-fault seismic risk assessment of simply supported bridges[J]. Earthquake Spectra, 2020, 36 (4): 1645- 1669
doi: 10.1177/8755293020935145
[6]
CHWN X, LI J Z, GUAN Z G Fragility analysis of tall pier bridges subjected to near-fault pulse-like ground motions[J]. Structure and Infrastructure Engineering, 2020, 16 (8): 1082- 1095
doi: 10.1080/15732479.2019.1683589
[7]
HARTZELL S H Earthquake aftershocks as Green’s functions[J]. Geophys Research Letters, 1978, 5 (1): 1- 4
doi: 10.1029/GL005i001p00001
[8]
BOORE D M Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bulletin of the Seismological Society of America, 1983, 73 (6): 1865- 1894
[9]
陶夏新, 王国新 近场强地震动模拟中对破裂的方向性效应和上盘效应的表达[J]. 地震学报, 2003, 25 (2): 191- 198 TAO Xia-xin, WANG Guo-xin Rupture directivity and hanging wall effect in near field strong ground motion simulation[J]. Acta Seismologica Sinica, 2003, 25 (2): 191- 198
doi: 10.3321/j.issn:0253-3782.2003.02.009
[10]
王国新, 史家平 近场强地震动合成方法研究及地震动模拟[J]. 东北地震研究, 2008, 24 (2): 4- 10 WANG Guo-xin, SHI Jia-ping Study and simulation on near-site strong ground motions[J]. Seismological Research of Northeast China, 2008, 24 (2): 4- 10
doi: 10.3969/j.issn.1674-8565.2008.02.002
[11]
王海云, 谢礼立 近断层强地震动场预测[J]. 地球物理学报, 2009, 52 (3): 703- 711 WANG Hai-yun, XIE Li-li Prediction of near-fault strong ground motion field[J]. Chinese Journal of Geophysics, 2009, 52 (3): 703- 711
[12]
孙吉泽, 俞言祥, 何金刚, 等 2013年乌鲁木齐MS5.6和MS5.1地震强地震动模拟研究 [J]. 地震学报, 2017, 39 (5): 751- 763 SUN Ji-ze, YU Yan-xiang, HE Jin-gang, et al Ground motion simulation of 2013 Ürümqi MS5.6 and MS5.1 earthquakes [J]. Acta Seismologica Sinica, 2017, 39 (5): 751- 763
doi: 10.11939/jass.2017.05.010
[13]
李启成, 何书耕, 闵也, 等 用随机有限断层方法模拟 2016-11-13新西兰 MW7.8地震 [J]. 大地测量与地球动力学, 2019, 39 (12): 1237- 1242 LI Qi-cheng, HE Shu-geng, MIN Ye, el al Simulation of Amberley New Zealand November 13, 2016 MW7.8 earthquake using stochastic finite fault method [J]. Journal of Geodesy and Geodynamics, 2019, 39 (12): 1237- 1242
[14]
香川敬生 ハイブリッド合成法に用いる統計的グリーン関数法の長周期帯域への拡張[J]. 日本地震工学会論文集, 2004, 4 (2): 21- 32 KAGAWA Takao Developing a stochastic Green ’s function method having more accuracy in long period range to be used in the hybrid method[J]. Journal of Japan Association for Earthquake Engineering, 2004, 4 (2): 21- 32
doi: 10.5610/jaee.4.2_21
[15]
入倉孝次郎, 香川敬生, 関口春子. 経験的グリーン関数を用いた強震動予測方法の改良 [C]// 日本地震学会講演予稿集. Tokyo: 日本地震学会, 1997(2): B25. IRIKURA Kojiro, KAGAWA Takao, SEKIGUCHI Haruko. Revision of the empirical Green ’s function method [C]// Program and abstracts of the Seismological Society of Japan. Tokyo: Seismological Society of Japan, 1997(2): B25.
[16]
佐藤智美 近地項と中間項を考慮した三成分統計的グリーン関数生成手法の高度化[J]. 日本建築学会構造系論文集, 2009, 74 (638): 629- 638 SATOH Toshimi Improvement of generation method of three components of statistical Green's functions considering near-field and intermediate-field terms[J]. Journal of Structural and Construction Engineering, 2009, 74 (638): 629- 638
doi: 10.3130/aijs.74.629
[17]
佐藤智美, 川瀬博, 佐藤俊明 ボアホール観測記録を用いた表層地盤同定手法による工学的基盤波の推定及びその統計的経時特性[J]. 日本建築学会構造系論文集, 1994, 59 (461): 19- 28 SATOH Toshimi, KAWASE Hiroshi, SATO Toshiaki Engineering bedrock waves obtained through the identification analysis based on borehole records and their statistical envelope characteristics[J]. Journal of Structural and Construction Engineering, 1994, 59 (461): 19- 28
doi: 10.3130/aijs.59.19_3
[18]
大崎順彦. 新地震動のスペクトル解析入門[M]. 東京: 鹿島出版会, 1994: 66-79.
[19]
HARTZELL S H, LEEDS A, FRANKEL A, et al Site response for urban Los Angeles using aftershocks of the Northridge earthquake[J]. Bulletin of the Seismological Society of America, 1996, 86 (1B): S168- S192
[20]
野津厚. 統計的グリーン関数に近地項と中間項を導入するための簡便な方法 [C]// 第 12回日本地震工学シンポジウム. Tokyo: JEES, 2006: 190-193. NOZU Atsushi. A simple scheme to introduce near-field and intermediate-field terms in stochastic Green’s functions [C]// Proceedings of the 12nd Japan Earthquake Engineering Symposium. Tokyo: JEES, 2006: 190-193.
[21]
WALD D J, HEATON T H, HUDNUT K W The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data[J]. Bulletin of the Seismological Society of America, 1996, 86 (1B): S49- S70
doi: 10.1785/BSSA08601B0S49