Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (12): 2225-2233    DOI: 10.3785/j.issn.1008-973X.2021.12.001
    
Influence of fault rupture process on seismic responses of seismic isolation bridges
Xu XIE(),Wen-tong HUANG,Long-fei JI,Tian-jia WANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1649KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An improved stochastic Green’s function method that using phase characteristics to simulate the directivity effect was proposed, in order to research the influence of the fault rupture process on the seismic response of seismic isolation bridges. Taking the fault conditions of the 1994 Northridge earthquake in the United States as an example, the effectiveness of the simulation method was verified by comparison with the actual seismic records. The improved stochastic Green's function method was used to simulate four groups of acceleration time histories with the same epicentral distance as the input conditions, and the effects of fault rupture process on the seismic response of seismic isolation bridges with the same epicentral distance and different directions were compared. Results show that the similarity between the duration envelope curve and the phase difference distribution can be used to simulate the acceleration time history of stochastic Green’s function conveniently. Under the same epicentral distance, the ground motion at the observation point in the fault rupture direction and the seismic response of the bridge structure at the corresponding position are significantly greater than those at the observation point in the non rupture direction. When the acceleration time history of ground motion in the rupture direction does not have pulse characteristics, the seismic response of seismic isolation bridges around the fault is mainly affected by the intensity of ground motion, and the influence of bridge orientation is not obvious.



Key wordsstochastic Green’s function method      fault rupture process      directional effect      seismic isolation bridge      phase characteristics     
Received: 05 January 2021      Published: 31 December 2021
CLC:  U 448  
Fund:  国家自然科学基金资助项目(51878606)
Cite this article:

Xu XIE,Wen-tong HUANG,Long-fei JI,Tian-jia WANG. Influence of fault rupture process on seismic responses of seismic isolation bridges. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2225-2233.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.12.001     OR     https://www.zjujournals.com/eng/Y2021/V55/I12/2225


断层破裂过程对减隔震桥梁地震反应的影响

为了研究断层破裂过程对减隔震桥梁地震反应的影响,提出利用相位特性模拟方向性效应的改进随机格林函数法. 以1994年美国北岭地震的断层条件为例,通过与实际地震记录对比验证模拟方法的有效性;应用改进的随机格林函数法模拟相同震中距离的4组地震动时程作为输入条件,比较断层破裂过程对相同震中距离、不同方位的减隔震桥梁地震反应影响. 结果表明,利用持时包络曲线与相位差分分布的相似性可以方便模拟随机格林函数的地震动加速度时程;在相同震中距离条件下,断层破裂方向的观测点地震动以及对应位置的桥梁结构地震反应明显大于非破裂方向位置的观测点;当破裂方向上地震动时程不具有脉冲特性时,断层周围的减隔震桥梁地震反应主要受地震动强度的影响,桥梁方位的影响不明显.


关键词: 随机格林函数法,  断层破裂过程,  方向性效应,  减隔震桥梁,  相位特性 
Fig.1 Earthquake duration model of sub-fault rupture
Fig.2 Phase difference spectrum and cumulative probability density distribution of small earthquake in sub-faust
Fig.3 Stochastic Green function to simulate ground motion
Fig.4 Fault and station location of Northridge earthquake
Fig.5 Comparison and verification of simulation results of acceleration time history and response spectrum with actual records of three stations in Northridge earthquake
台站 实测/模拟 PGV/(cm·s?1) PGA/(cm·s?2) PGV/PGA/s
LV3 实测H1方向 8.43 82.53 0.10
LV3 实测H2方向 8.02 103.76 0.08
LV3 模拟 8.03 85.04 0.09
LV1 实测H1方向 7.81 87.14 0.09
LV1 实测H2方向 7.05 71.80 0.10
LV1 模拟 10.91 104.49 0.10
Tab.1 PGV/PGA of station LV3 and LV1
Fig.6 Bridge elevation layout
Fig.7 Calculation model of bridge seismic response
Fig.8 Observation location and simulation result of ground motion acceleration time history and response spectrum
Fig.9 Displacement response of P4 pier top and hysteretic curve of E shape steel damper at P5 pier
Fig.10 Adjusted ground motion of El Centro earthquake
${\rm{PGA} }$ $ 地震动 $ $|d^{{\rm{P4}}}_{{\rm{max}}}|$ $\eta ^{\rm{P5}}$
0.15g El Centro 27.6 3.5
0.15g 15-2 21.7 2.5
0.15g 30-4 24.0 2.8
0.30g El Centro 35.5 5.3
0.30g 15-3 26.2 3.8
0.30g 30-1 25.6 3.5
0.60g El Centro 40.3 8.5
0.60g 15-1 43.9 10.2
Tab.2 Comparison with displacement of pier top and plastic ratio of E shape steel damper under different seismic input
[1]   廖文义, 罗俊雄, 万绚. 隔震桥梁承受近断层地震之反应分析[J]. 地震工程与工程振动, 2001, 21(4): 102-108.
LIAO Wen-yi, LUO Jun-xiong, WAN Xuan. Responses of isolated bridges subjected to near-fault ground motions [J], Earthquake Engineering and Engineering Vibration, 2001, 21(4): 102-108.
[2]   JONSSON M H, BESSASON B, HAFLIDASON E Earthquake response of a base-isolated bridge subjected to strong near-fault ground motion[J]. Soil Dynamics and Earthquake Engineering, 2010, 30 (6): 447- 455
doi: 10.1016/j.soildyn.2010.01.001
[3]   李小军, 贺秋梅, 亓兴军 地震动速度脉冲对大跨斜拉桥减震控制的影响[J]. 应用基础与工程科学学报, 2012, 20 (2): 272- 285
LI Xiao-jun, HE Qiu-mei, QI Xing-jun Seismic mitigation control effects of long-span cable-stayed bridges to ground motions with velocity pulse[J]. Journal of Basic Science and Engineering, 2012, 20 (2): 272- 285
doi: 10.3969/j.issn.1005-0930.2012.02.011
[4]   魏红一, 逯宗典, 王志强 近场简支梁铅芯橡胶支座隔震特性分析[J]. 同济大学学报:自然科学版, 2010, 38 (1): 39- 44
WEI Hong-yi, LU Zong-dian, WANG Zhi-qiang Isolation characteristic analysis of simple supported bridge to near fault ground motions[J]. Journal of Tongji University: Natural Science, 2010, 38 (1): 39- 44
[5]   ZHONG J, JIANG L W, PANG Y T, et al Near-fault seismic risk assessment of simply supported bridges[J]. Earthquake Spectra, 2020, 36 (4): 1645- 1669
doi: 10.1177/8755293020935145
[6]   CHWN X, LI J Z, GUAN Z G Fragility analysis of tall pier bridges subjected to near-fault pulse-like ground motions[J]. Structure and Infrastructure Engineering, 2020, 16 (8): 1082- 1095
doi: 10.1080/15732479.2019.1683589
[7]   HARTZELL S H Earthquake aftershocks as Green’s functions[J]. Geophys Research Letters, 1978, 5 (1): 1- 4
doi: 10.1029/GL005i001p00001
[8]   BOORE D M Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bulletin of the Seismological Society of America, 1983, 73 (6): 1865- 1894
[9]   陶夏新, 王国新 近场强地震动模拟中对破裂的方向性效应和上盘效应的表达[J]. 地震学报, 2003, 25 (2): 191- 198
TAO Xia-xin, WANG Guo-xin Rupture directivity and hanging wall effect in near field strong ground motion simulation[J]. Acta Seismologica Sinica, 2003, 25 (2): 191- 198
doi: 10.3321/j.issn:0253-3782.2003.02.009
[10]   王国新, 史家平 近场强地震动合成方法研究及地震动模拟[J]. 东北地震研究, 2008, 24 (2): 4- 10
WANG Guo-xin, SHI Jia-ping Study and simulation on near-site strong ground motions[J]. Seismological Research of Northeast China, 2008, 24 (2): 4- 10
doi: 10.3969/j.issn.1674-8565.2008.02.002
[11]   王海云, 谢礼立 近断层强地震动场预测[J]. 地球物理学报, 2009, 52 (3): 703- 711
WANG Hai-yun, XIE Li-li Prediction of near-fault strong ground motion field[J]. Chinese Journal of Geophysics, 2009, 52 (3): 703- 711
[12]   孙吉泽, 俞言祥, 何金刚, 等 2013年乌鲁木齐MS5.6和MS5.1地震强地震动模拟研究 [J]. 地震学报, 2017, 39 (5): 751- 763
SUN Ji-ze, YU Yan-xiang, HE Jin-gang, et al Ground motion simulation of 2013 Ürümqi MS5.6 and MS5.1 earthquakes [J]. Acta Seismologica Sinica, 2017, 39 (5): 751- 763
doi: 10.11939/jass.2017.05.010
[13]   李启成, 何书耕, 闵也, 等 用随机有限断层方法模拟 2016-11-13新西兰 MW7.8地震 [J]. 大地测量与地球动力学, 2019, 39 (12): 1237- 1242
LI Qi-cheng, HE Shu-geng, MIN Ye, el al Simulation of Amberley New Zealand November 13, 2016 MW7.8 earthquake using stochastic finite fault method [J]. Journal of Geodesy and Geodynamics, 2019, 39 (12): 1237- 1242
[14]   香川敬生 ハイブリッド合成法に用いる統計的グリーン関数法の長周期帯域への拡張[J]. 日本地震工学会論文集, 2004, 4 (2): 21- 32
KAGAWA Takao Developing a stochastic Green ’s function method having more accuracy in long period range to be used in the hybrid method[J]. Journal of Japan Association for Earthquake Engineering, 2004, 4 (2): 21- 32
doi: 10.5610/jaee.4.2_21
[15]   入倉孝次郎, 香川敬生, 関口春子. 経験的グリーン関数を用いた強震動予測方法の改良 [C]// 日本地震学会講演予稿集. Tokyo: 日本地震学会, 1997(2): B25.
IRIKURA Kojiro, KAGAWA Takao, SEKIGUCHI Haruko. Revision of the empirical Green ’s function method [C]// Program and abstracts of the Seismological Society of Japan. Tokyo: Seismological Society of Japan, 1997(2): B25.
[16]   佐藤智美 近地項と中間項を考慮した三成分統計的グリーン関数生成手法の高度化[J]. 日本建築学会構造系論文集, 2009, 74 (638): 629- 638
SATOH Toshimi Improvement of generation method of three components of statistical Green's functions considering near-field and intermediate-field terms[J]. Journal of Structural and Construction Engineering, 2009, 74 (638): 629- 638
doi: 10.3130/aijs.74.629
[17]   佐藤智美, 川瀬博, 佐藤俊明 ボアホール観測記録を用いた表層地盤同定手法による工学的基盤波の推定及びその統計的経時特性[J]. 日本建築学会構造系論文集, 1994, 59 (461): 19- 28
SATOH Toshimi, KAWASE Hiroshi, SATO Toshiaki Engineering bedrock waves obtained through the identification analysis based on borehole records and their statistical envelope characteristics[J]. Journal of Structural and Construction Engineering, 1994, 59 (461): 19- 28
doi: 10.3130/aijs.59.19_3
[18]   大崎順彦. 新地震動のスペクトル解析入門[M]. 東京: 鹿島出版会, 1994: 66-79.
[19]   HARTZELL S H, LEEDS A, FRANKEL A, et al Site response for urban Los Angeles using aftershocks of the Northridge earthquake[J]. Bulletin of the Seismological Society of America, 1996, 86 (1B): S168- S192
[20]   野津厚. 統計的グリーン関数に近地項と中間項を導入するための簡便な方法 [C]// 第 12回日本地震工学シンポジウム. Tokyo: JEES, 2006: 190-193.
NOZU Atsushi. A simple scheme to introduce near-field and intermediate-field terms in stochastic Green’s functions [C]// Proceedings of the 12nd Japan Earthquake Engineering Symposium. Tokyo: JEES, 2006: 190-193.
[21]   WALD D J, HEATON T H, HUDNUT K W The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data[J]. Bulletin of the Seismological Society of America, 1996, 86 (1B): S49- S70
doi: 10.1785/BSSA08601B0S49
[22]   PEER. PEER strong ground motion databases [DB/OL]. [2020-12-29]. https://peer.berkeley.edu/peer-strong-ground-motion-databases.
[23]   谢旭, 王炎, 陈列 轨道约束对铁路减隔震桥梁地震响应的影响[J]. 铁道学报, 2012, 34 (6): 75- 82
XIE Xu, WANG Yan, CHEN Lie Effect of rail restraints on seismic response of cushioning railway bridges[J]. Journal of the China Railway Society, 2012, 34 (6): 75- 82
doi: 10.3969/j.issn.1001-8360.2012.06.014
[1] Zhi-yuan MA,Jiang LIU,Yong-jian LIU,Yi LYU,Guo-jing ZHANG. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 909-919.
[2] Jian-ming TANG,Xu XIE. Investigation on vibration serviceability of long-span suspension footbridge under crosswind[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1903-1911.
[3] Wen-tao YU,Xu XIE,Cheng CHENG. Effects of welding details on ultra-low cycle fatigue performance of T-welded joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 31-37.
[4] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[5] Han-qing ZHUGE,Xu XIE,Yan-hua LIAO,Zhan-zhan TANG. Effect of transverse earthquake action on development of seismic damage of steel arch bridges[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 702-712.
[6] LU Nai wei, LUO Yuan, WANG Qin yong, Noori Mohammad. Dynamic reliability assessment for long-span bridges under vehicle load[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2328-2335.
[7] XIAO Xin hui, LU Nai wei, LIU Yang. Fatigue reliability assessment for highway steel bridges under stochastic traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1777-1783.
[8] WANG Cheng quan, SHEN Yong gang, WANG Gang, XIE Xu. Field tests on mechanical characteristic of link slab on hollow-cored slab beam bridge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1438-1445.
[9] LIU Yang, ZHANG Hai ping, DENG Yang, Li Ming. Fatigue damage analysis on simple supported bridge under overloading[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2172-2178.
[10] WANG Gang, XIE Xu, WANG Cheng-quan, SHEN Yong-gang. Mechanical performance of arch-type continuous slab-deck on simply-supported girder bridge[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1049-1057.
[11] WANG Tong, XIE Xu, WANG Yuan, SHI Peng-cheng. Analysis of prestressed composite truss girders with steel truss webs[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 711-720.
[12] YUAN Pei, XIE Xu, SHEN Yong-gang. Identification method for tensile force in hanger of arch bridges
with damper and its application
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1592-1598.
[13] HUANG Hai-yan, XIE Xu, WU Dong-yan, WANG Rong-fu, WANG Yuan. Damping characteristics of PC partial cable-stayed bridge[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 804-810.
[14] XIE Xu, LI Ji-Long, DIAO Dun-Liang, ZHANG He, SHAN Xia-Gan-Fu. Identification method of vehicle parameters based on genetic algorithms[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1818-1824.
[15] XIE Xu, TUN Dong-Yan, WANG Jian-Feng, et al. Dynamical behavior of steel box girder bridges due to vehicle-induced vibration at expansion joint[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(10): 1923-1930.