Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 31-37    DOI: 10.3785/j.issn.1008-973X.2021.01.004
Effects of welding details on ultra-low cycle fatigue performance of T-welded joint
Wen-tao YU(),Xu XIE*(),Cheng CHENG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1434KB) HTML
Export: BibTeX | EndNote (RIS)      


T-welded joint was adopted as a research object and a structural multi-scale calculation program was proposed based on Arlequin algorithm on the general finite element program Abaqus platform in order to analyze the effects of welding details on ultra-low cycle fatigue performance of steel structures. Local elastic-plastic finite element analysis of T-welded joints were conducted, and the local plastic strain characteristics were analyzed. The effects of welding details, such as weld toe radius, unfused length of thick steel plate and unevenness of weld toe surface on local plastic strain history were compared. The ultra-low cycle fatigue characteristics of T-welded joints were discussed by qualitatively using Coffin-Manson model. The numerical calculation results show that weld toe position is the vulnerable position of T-welded joints, and the influence of the unfused length of the steel plates on the local plastic strain history of the welded part is negligible. The local plastic strain history is more sensitive to the change of the weld toe radius, and the increase of the weld toe radius can significantly improve the ultra-low cycle fatigue performance of the structure under cyclic loading. The flatness of weld surfaces is an important factor on the plastic strain history of welding areas. Sharp dents can significantly reduce the ultra-low cycle fatigue performance of welded joints whereas a smoother welding surface is beneficial to reduce the local plastic strain and improve the ultra-low cycle fatigue strength of joints.

Key wordsT-welded joint      multi-scale analysis method      Arlequin algorithm      local plastic strain history      ultra-low cycle fatigue      parametric analysis     
Received: 18 January 2020      Published: 05 January 2021
CLC:  U 448  
Corresponding Authors: Xu XIE     E-mail:;
Cite this article:

Wen-tao YU,Xu XIE,Cheng CHENG. Effects of welding details on ultra-low cycle fatigue performance of T-welded joint. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 31-37.

URL:     OR


为了研究焊接细节对钢结构超低周疲劳性能的影响,以T型接头为对象,在通用有限元程序Abaqus平台上,开发基于Arlequin算法的结构多尺度计算程序. 利用多尺度算法,开展焊接接头的局部弹塑性有限元分析. 比较焊趾半径、厚钢板未熔透长度及焊趾表面凹凸对局部塑性应变履历的影响,利用Coffin-Manson模型对T型接头的超低周疲劳特性进行定性讨论. 数值计算结果表明,焊趾位置是焊接接头的超低周疲劳易损位置,厚钢板的未熔透长度对焊接部位局部塑性应变的影响不大;焊趾半径对焊趾局部塑性应变有较大的影响,增大焊趾半径可以有效提升钢结构在循环荷载下的超低周疲劳性能;焊趾表面的平整性是影响焊趾局部塑性应变履历的重要因素,尖锐的凹坑会明显降低焊接接头的超低周疲劳性能,磨平的焊趾表面可以减少局部塑性应变,提高接头的超低周疲劳强度.

关键词: T型焊接接头,  多尺度分析方法,  Arlequin法,  局部塑性应变履历,  超低周疲劳,  参数分析 
Fig.1 Analytical model and loading form of T-welded joint
材料 σ|0 / MPa Q/ MPa b Ckin,1/MPa γ1 Ckin,2 /MPa γ2 Ckin,3 /MPa γ3 εf c
母材 354.10 13.2 0.6 44373.7 523.8 9346.6 120.2 946.1 18.7 0.8219 ?0.6550
热影响区 312.57 9.8 0.7 32242.4 199.2 3858.5 43.1 329.2 0.3 ? ?
焊缝 428.45 17.4 0.4 12752.3 160.0 1111.2 160.0 630.5 26.0 0.6097 ?0.6786
Tab.1 Parameters of chaboche' strengthening model for Q345qC steel
Fig.2 Calculation zone of Arlequin algorithm
Fig.3 Finite element models for structural multi-scale algorithm verification
Fig.4 Results of structural multi-scale algorithm verification
Fig.5 Material assignment methods of welded joint zone
Fig.6 Effect of material assignment methods on equivalent plastic strain at weld toe
Fig.7 Effect of forced displacement amplitude on equivalent plastic strain at weld toe
Fig.8 Schematic diagram of unwelded zone end
编号 a /mm h /mm 发生位置 PEEQ
1 0 0 焊趾 3.58
2 8.0 1.0 焊趾 3.57
2 8.0 1.0 垂直边界 0.10
3 16.0 1.0 焊趾 3.57
3 16.0 1.0 垂直边界 0.04
4 16.0 1.0 圆弧边界 0.11
4 16.0 2.0 焊趾 3.57
Tab.2 Equivalent plastic strain considering effect of unwelded zone on weld toe
Fig.9 Effect of toe radius on maximum equivalent plastic strain
类型 r0/mm h0/mm 发生位置
一个凹陷 0.2、0.5、1.0、2.0 0.5 焊趾中点
一个凸起 0.2、0.5、1.0、2.0 0.5 焊趾中点
Tab.3 Unevenness parameter for welding toe
Fig.10 Form of roughness welding surface
Fig.11 Effect of roughness on equivalent plastic strain at weld toe
Fig.12 Comparison map of fatigue life-toe radius
曲线类型 Nf
r0=0.2 mm r0=0.5 mm r0=1.0 mm r0=2.0 mm
凹陷 4.71 9.76 18.31 27.53
凸起 27.22 10.32 6.37 5.98
Tab.4 Comparison table of radius of concave convex curve of weld surface-fatigue life
[1]   GATES W E, MORDEN M Professional structural engineering experience related to welded steel moment frames following the Northridge earthquake[J]. Structural Design of Tall and Special Buildings, 1996, 5 (1): 29- 44
doi: 10.1002/(SICI)1099-1794(199603)5:1<29::AID-TAL63>3.0.CO;2-V
[2]   NAKASHIMA M, INOUE K, TADA M Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake[J]. Engineering Structures, 1998, 20 (4/6): 271- 281
[3]   周晖, 王元清, 石永久, 等 基于微观机理的梁柱节点焊接细节断裂分析[J]. 工程力学, 2015, 32 (5): 37- 50
ZHOU Hui, WANG Yuan-qing, SHI Yong-jiu, et al Fracture analyses of welded details in beam-to-column connections using micromechanics-based models[J]. Engineering Mechanics, 2015, 32 (5): 37- 50
[4]   GE H B, KANG L, TSUMURA Y Extremely low-cycle fatigue tests of thick-walled steel bridge piers[J]. Journal of Bridge Engineering, ASCE, 2013, 18 (9): 858- 870
doi: 10.1061/(ASCE)BE.1943-5592.0000429
[5]   TATEISHI K, CHEN T, HANJI T Extremely low cycle fatigue assessment method for un-stiffened cantilever steel columns[J]. Doboku Gakkai Ronbunshuu A, 2008, 64 (2): 288- 296
doi: 10.2208/jsceja.64.288
[6]   USAMI T, WANG C L, FUNAYAMA J Low-cycle fatigue tests of a type of buckling restrained braces[J]. Procedia Engineering, 2011, 14 (14): 956- 964
[7]   廖燕华, 谢旭, 唐站站 Q345qC钢及焊接接头低周疲劳性能与断裂机理[J]. 浙江大学学报: 工学版, 2018, 52 (1): 73- 81
LIAO Yan-hua, XIE Xu, TANG Zhan-zhan Low cycle fatigue properties and fracture mechanism of Q345qC steel and its welded joint[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (1): 73- 81
[8]   TATEISH K, HANJI T, MINAMI K A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29 (5): 887- 896
doi: 10.1016/j.ijfatigue.2006.08.001
[9]   XUE L A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading[J]. International Journal of Fatigue, 2008, 30 (10/11): 1691- 1698
[10]   KANVINDE A M, DEIERLEIN G G Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra-low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133 (6): 701- 712
doi: 10.1061/(ASCE)0733-9399(2007)133:6(701)
[11]   ANDERSON T L. Fracture mechanics: fundamentals and applications [M]. 3rd ed. Boca Raton: CRC Press, 2005.
[12]   TONG L W, HUANG X W, ZHOU F, et al Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints[J]. Journal of Constructional Steel Research, 2016, 119 (1): 98- 112
[13]   BONORA N On the effect of triaxial state of stress on ductility using nonlinear CDM model[J]. International Journal of Fracture, 1997, 88 (4): 359- 371
doi: 10.1023/A:1007479522972
[14]   TATAISHI K, CHEN T, HANJI T A new local strain based approach to low cycle fatigue assessment of welded joint[J]. JSSC Steel Construction Engineering, 2006, 13 (52): 73- 81
[15]   加藤弘務, 葛漢彬, 羽田新輝 ルートギャップを有さない溶接継手部の未溶着比率が鋼製橋脚隅角部の延性き裂発生·進展に及ぼす影響[J]. 土木学会論文集A1(構造地震工学), 2015, 71 (4): I-349- 362
KATO H, GE H, HADA S Effect of unwelded ratio on ductile crack initiation and propagation of cross joints in steel beam-column connections without root gap[J]. Journal of Structural Engineering and Earthquake Engineering, JSCE, 2015, 71 (4): I-349- 362
[16]   廖燕华. 钢桥焊接节点超低周疲劳性能与断裂机理研究[D]. 杭州: 浙江大学, 2018.
LIAO Yan-hua. Research on ultra low cycle fatigue properties and fracture mechanism of steel bridge welded joint [D]. Hangzhou: Zhejiang University, 2018.
[17]   田村洋, 佐々木栄一, 山田均 応力三軸度に着目した鋼製橋脚における 地震時脆性破壊発生要因に関する解析的検討[J]. 土木学会論文集A, 2010, 66 (3): I- 420-434
TAMURA H, SASAKI E, YAMADA H, et al Analytical study focusing on stress triaxiality on factor of brittle fracture during earthqakes in steel bridge bents[J]. Doboku Gakkai Ronbunshuu A, 2010, 66 (3): I- 420-434
[18]   BEN D H Multiscale mechanical problems: the Arlequin method[J]. Comptes Rendus de l Académie des Sciences-Series IIB – Mechanics – Physics – As tronomy, 1998, 326 (12): 899- 904
doi: 10.1016/S1251-8069(99)80046-5
[19]   乔华. Arlequin构架下结构多尺度数值模拟[D]. 杭州: 浙江大学, 2011.
QIAO Hua. Multi-scale numerical simulation of structures within the arlequin framework [D]. Hangzhou: Zhejiang University, 2011.
[20]   GHANEM A, TORKHANI M, MAHJOUBI N, et al Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structural transient dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 292- 308
doi: 10.1016/j.cma.2012.08.019
[21]   PFALLER S, RAHIMI M, POSSART G, et al An Arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 260 (260): 109- 129
[22]   COFFIN L F J A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transaction of ASME, 1954, 97 (1): 931- 950
[1] Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.
[2] GE Dan dong, TONG Lei, WU Ning, HUA Chen, DU Jia. Parametric analysis and reconstruction method of village’s road morphology[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 279-286.