Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 2018-2026    DOI: 10.3785/j.issn.1008-973X.2020.10.020
    
Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature
Xiao-wei LIAO1,2(),Yuan-qing WANG2,*(),Jian-guo WU1,Yong-jiu SHI2
1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310023, China
2. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China
Download: HTML     PDF(1536KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A series of the high-cycle constant-amplitude fatigue tests on the non-load-carrying cruciform fillet-welded joints were conducted at room temperature and ?60 °C in order to analyze the fatigue behavior and performance of the welded joints in the steel bridges. The effect mechanism of the low temperature on the fatigue crack propagation life of those joints was analyzed through three-dimensional crack propagation simulation. The experimental results show the marginal effect due to the low temperatures on the S-N fatigue of the cruciform fillet-welded joints. The initial crack-like defects always propagate simultaneously at several sites along the weld toes. The fatigue crack propagation life is affected negligibly by the deteriorated fracture toughness in steel materials induced by the decreasing temperature. Although the resistance to fatigue crack propagation in steel materials is enhanced by the decreasing temperature, the fatigue life of those fillet-welded joints is still dominated by the diverse initial defects produced during the welding processes. Adopting the three-dimensional multi-crack coupled propagation analysis was recommended to predict more accurately the fatigue life of welded joints in the further research.



Key wordsbridge steel      cruciform fillet-welded joint      low–temperature fatigue      crack propagation      fracture mechanics     
Received: 14 October 2019      Published: 28 October 2020
CLC:  U 441  
Corresponding Authors: Yuan-qing WANG     E-mail: liaoxiaowei@zjut.edu.cn;wang-yq@mail.tsinghua.edu.cn
Cite this article:

Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.020     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/2018


低温环境下十字形非传力角焊缝接头的疲劳性能

为了研究低温环境下钢桥焊接细节的疲劳行为和性能,以典型的十字形非传力角焊缝接头为对象,开展室温和?60 °C下的高周常幅疲劳试验;基于三维裂纹扩展数值模拟,分析低温对该焊接细节疲劳裂纹扩展寿命的影响机理. 结果表明,该焊接细节的室温和?60 °C条件下试验S-N疲劳寿命未表现出显著区别,初始焊接缺陷裂纹会在细节焊趾处的多个位置同时扩展;由低温环境导致的钢材断裂韧性的降低不会对该焊接细节的疲劳寿命产生明显影响. 虽然低温会增强钢材抵抗疲劳裂纹扩展的能力,但是该焊接细节的疲劳寿命主要受焊接过程产生的多样化初始裂纹缺陷因素控制;建议采用考虑多裂纹耦合扩展的三维裂纹扩展数值模拟来更加精确地预测疲劳裂纹扩展寿命.


关键词: 桥梁钢材,  十字形焊接接头,  低温疲劳,  裂纹扩展,  断裂力学 
Fig.1 Schematic diagram of non-load-carrying cruciform fillet-welded joints
Fig.2 Mean values and standard deviation of fillet weld sizes of cruciform joints
温度 试件编号 Δσ/MPa N/周 裂纹模式 温度 试件编号 Δσ/MPa N/周 裂纹模式
? ? ? ? ? ?60 °C NLL-1 243 180839 1/4椭圆角裂纹
室温 NLR-1 225 207716 边缘贯穿裂纹 ?60 °C NLL-2 225 159224 边缘贯穿裂纹
室温 NLR-2 207 254546 多个半椭圆裂纹 ?60 °C NLL-3 207 308043 边缘贯穿裂纹
室温 NLR-3 189 285802 边缘贯穿裂纹 ?60 °C NLL-4 189 342520 多个半椭圆裂纹
室温 NLR-4 171 310355 边缘贯穿裂纹 ?60 °C NLL-5 171 370673 半椭圆表面裂纹
室温 NLR-5 153 538264 半椭圆表面裂纹 ?60 °C NLL-6 153 423223 边缘贯穿裂纹
室温 NLR-6 135 879401 多个半椭圆裂纹 ?60 °C NLL-7 135 656666 边缘贯穿裂纹
室温 NLR-7 126 1069528 半椭圆表面裂纹 ?60 °C NLL-8 126 1129634 边缘贯穿裂纹
室温 NLR-8 117 1515128 多个半椭圆裂纹 ?60 °C NLL-9 117 1128144 半椭圆表面裂纹
室温 NLR-9 108 1553933 多个半椭圆裂纹 ?60 °C NLL-10 108 1254981 半椭圆表面裂纹
室温 NLR-10 99 2000000 未断 ?60 °C NLL-11 99 1363262 半椭圆表面裂纹
Tab.1 Fatigue test results of non-load-carrying cruciform fillet-welded joints
Fig.3 Test set-up for low-temperature fatigue tests
Fig.4 Fatigued specimens at room and low temperatures
Fig.5 Crack growth morphology of fatigued specimens at room and low temperature
Fig.6 S-N results at room temperature and −60 °C
Fig.7 Three-dimensional crack propagation finite element model for non-load-carrying cruciform fillet-welded joints
Fig.8 Comparison of numerical and analytic values of I-mode stress intensity factors
Fig.9 Calculation of stress intensity factors for different cracks
Fig.10 Comparison of predicted fatigue crack propagation life and test results for cruciform fillet-welded joints
Fig.11 Effect of fracture toughness on fatigue crack propagation life of cruciform fillet-welded joints
Fig.12 Effect of temperature-depended Paris parameters on fatigue life of cruciform fillet-welded joints
[1]   YE X W, SU Y H, HAN J P A state-of-the-art review on fatigue life assessment of steel bridges[J]. Mathematic Problems in Engineering, 2014, 3: 1- 13
[2]   王元清, 廖小伟, 贾单锋, 等 钢结构的低温疲劳性能研究进展综述[J]. 钢结构研究进展, 2018, 20 (1): 1- 11
WANG Yuan-qing, LIAO Xiao-wei, JIA Dan-feng, et al Overview of research progress for the low-temperature fatigue performance of steel structures[J]. Progress in Steel Building Structures, 2018, 20 (1): 1- 11
[3]   刘晓光 铁路钢桥疲劳研究进展[J]. 铁道建筑, 2015, 10: 19- 25
LIU Xiao-guang Development of fatigue research on railway steel bridges[J]. Railway Engineering, 2015, 10: 19- 25
[4]   廖小伟, 王元清, 宗亮, 等 基于有效缺口应力法的钢桥焊接细节疲劳分析[J]. 浙江大学学报: 工学版, 2017, 50 (1): 1- 8
LIAO Xiao-wei, WANG Yuan-qing, ZONG Liang, et al Fatigue analysis of typical welded joints of steel bridges using effective notch stress approach[J]. Journal of Zhejiang University: Engineering Science, 2017, 50 (1): 1- 8
[5]   郭宏超, 毛宽宏, 万金怀, 等 高强度钢材疲劳性能研究进展[J]. 建筑结构学报, 2019, 40 (4): 17- 28
GUO Hong-chao, MAO Kuan-hong, WAN Jin-huai, et al Research progress on fatigue properties of high strength steels[J]. Journal of Building Structures, 2019, 40 (4): 17- 28
[6]   王元清 钢结构在低温下脆性破坏研究概述[J]. 钢结构, 1994, 9 (4): 217- 221
WANG Yuan-qing Survey of investigation about brittle fracture of steel structure under low temperature[J]. Steel Construction, 1994, 9 (4): 217- 221
[7]   STEPHENS R I, CHUNG J H, GLINKA G. Low temperature fatigue behavior of steels: a review [C]// 39th Annual Earthmoving Industry Conference. Iowa: SAE, 1979: 1892-1904.
[8]   王元清, 廖小伟, 张子富, 等 输电线铁塔钢材的低温力学和冲击韧性试验[J]. 哈尔滨工业大学学报, 2015, 47 (12): 70- 74
WANG Yuan-qing, LIAO Xiao-wei, ZHANG Zi-fu, et al Experimental study on mechanical properties and impact toughness of steel for transmission line towers at low temperatures[J]. Journal of Harbin Institute of Technology, 2015, 47 (12): 70- 74
[9]   LIAO X W, WANG Y Q, QIAN X D, et al Fatigue crack propagation for Q345qD bridge steel and its butt welds at low temperatures[J]. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41: 675- 687
doi: 10.1111/ffe.12727
[10]   SHUL’GINOV B S, MATVEYEV V V Impact fatigue of low-alloy steels and their welded joints at low temperature[J]. International Journal of Fatigue, 1997, 19 (8/9): 621- 627
[11]   KANG K W, GOO B C, KIM J H, et al Experimental investigation on static and fatigue behavior of welded SM490A steel under low temperature[J]. Steel Structures, 2009, 9 (1): 85- 91
doi: 10.1007/BF03249483
[12]   BRIDGES R, ZHANG S, SHAPOSHNIKOV V Experimental investigation on the effect of low temperatures on the fatigue strength of welded steel joints[J]. Ships and Offshore Structures, 2012, 7 (3): 311- 319
doi: 10.1080/17445302.2011.563550
[13]   JEONG D, PARK T, LEE J, et al Ambient and cryogenic S-N fatigue behavior of Fe15Mn steel and its weld[J]. Metals and Materials International, 2015, 21 (3): 453- 460
doi: 10.1007/s12540-015-4397-7
[14]   LI Z R, ZHANG D C, WU H Y, et al Fatigue properties of welded Q420 high strength steel at room and low temperatures[J]. Construction and Building Materials, 2018, 189: 955- 966
doi: 10.1016/j.conbuildmat.2018.07.231
[15]   钢结构焊接规范: GB50661-2011 [S]. 北京: 中国建筑工业出版社, 2011.
[16]   Eurocode 3: Design of steel structures - Part 1-9: Fatigue: BS EN 1993-1-9: 2005 [S]. London: British Standards Institution, 2005.
[17]   WALTERS C L, ALVARO A, MALJAARS J The effect of low temperatures on the fatigue crack growth of S460 structural steel[J]. International Journal of Fatigue, 2016, 82: 110- 118
doi: 10.1016/j.ijfatigue.2015.03.007
[18]   AYGüL M, AL-EMRANI M, BARSOUM Z, et al Investigation of distortion-induced fatigue cracked welded details using 3D crack propagation analysis[J]. International Journal of Fatigue, 2014, 64: 54- 66
doi: 10.1016/j.ijfatigue.2014.02.014
[19]   ZONG L, SHI G, WANG Y Q, et al Investigation on fatigue behaviour of load-carrying fillet welded joints based on mix-mode crack propagation analysis[J]. Archives of Civil and Mechanical Engineering, 2017, 17: 677- 686
doi: 10.1016/j.acme.2017.01.009
[20]   刘益铭, 张清华, 崔闯, 等 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报, 2016, 29 (7): 89- 95
LIU Yi-ming, ZHANG Qing-hua, CUI Chuang, et al Numerical simulation method for 3D fatigue crack propagation of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29 (7): 89- 95
[21]   王春生, 翟慕赛, 唐友明, 等 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30 (3): 82- 95
WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 82- 95
[22]   PARIS P, ERDOGAN F A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85 (4): 528- 533
doi: 10.1115/1.3656900
[23]   Franc3D, Reference manual for version 7 [R]. New York: Fracture Analysis Consultants, Inc., 2016.
[24]   TANAKA K Fatigue crack propagation from a crack inclined to the cyclic tensile axis[J]. Engineering Fracture Mechanics, 1974, 6 (3): 493- 498
doi: 10.1016/0013-7944(74)90007-1
[25]   ERDOGAN F, SIH G C On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963, 85 (4): 519- 525
doi: 10.1115/1.3656897
[26]   RADAJ D, SONSINO C M, FRICKE W. Fatigue assessment of welded joints by local approaches [M]. Cambridge: Woodhead Publishing, 2006.
[27]   CHAPETTI M D, JAUREGUIZAHAR L F Fatigue behavior prediction of welded joints by using an integrated fracture mechanics approach[J]. International Journal of Fatigue, 2012, 43: 43- 53
doi: 10.1016/j.ijfatigue.2012.02.004
[28]   LASSEN T, RECHO N Proposal for a more accurate physically based S-N curve for welded steel joints[J]. International Journal of Fatigue, 2009, 31 (1): 70- 78
doi: 10.1016/j.ijfatigue.2008.03.032
[29]   王元清, 廖小伟, 周晖, 等 基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究[J]. 工程力学, 2017, 34 (5): 42- 51
WANG Yuan-qing, LIAO Xiao-wei, ZHOU Hui, et al Safety assessment of steel structure component with crack defects using SINTAP-FAD method[J]. Engineering Mechanics, 2017, 34 (5): 42- 51
[30]   LIAO X W, WANG Y Q, WANG Z Y, et al Effect of low temperatures on constant amplitude fatigue properties of Q345qD steel butt-welded joints[J]. Engineering Failure Analysis, 2019, 105: 597- 609
doi: 10.1016/j.engfailanal.2019.07.006
[31]   LEANDER J, AYGüL M, NORLIN B Refined fatigue assessment of joints with welded in-plane attachments by LEFM[J]. International Journal of Fatigue, 2013, 56: 25- 32
doi: 10.1016/j.ijfatigue.2013.07.013
[32]   Guide to methods for assessing the acceptability of flaws in metallic structures: BS7910 [S]. London: British Standards Institution, 2005.
[1] QIN Hong-yuan, LIU Yi-ming, HUANG Dan. Peridynamic modelling and simulation for multiple crack propagation in brittle materials[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 497-503.
[2] OUYANG Xiao-ping, LIU Yu-long, XUE Zhi-quan, GUO Sheng-rong, ZHOU Qing-he, YANG Hua-yong. null[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1361-1367.
[3] LI Ming, LIU Yang, TANG Xue-song. Trans-scale analysis for fatigue crack[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 524-531.
[4] LIU Hong-bo, ZHAI Chang-hai, XIE Li-li, SHAO Yong-song. Parametric analyse of stress intensity factors of beam-to-column web
connections in steel moment frames
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1108-1112.
[5] JIANG Mei-ling, JIN Xian-yu, TIAN Ye, JIN Nan-guo. New concrete cracking model established based on
fracture mechanics and damage theory
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 948-953.
[6] YANG Xin-Wang, BI Guo-Li, ZHANG Xue, et al. Path iterative method for laser-controlled crack propagation and its convergence[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(11): 2043-2047.