Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 92-99    DOI: 10.3785/j.issn.1008-973X.2022.01.010
    
Lining disease identification of highway tunnel based on deep learning
Song REN(),Qian-wen ZHU,Xin-yue TU,Chao DENG,Xiao-shu WANG
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
Download: HTML     PDF(1492KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A highway tunnel lining disease detection method based on convolutional neural network was proposed aiming at the ever-increasing demand for tunnel maintenance in order to save time and labor costs. The self-developed intelligent rapid detection vehicle for tunnels was used to collect 24 tunnel lining images. A high-quality data set of more than 20000 disease images was constructed. Then single-stage SSD (single shot multiBox detector) models and two-stage R-FCN (region-based fully convolutional networks) models were constructed on a self-made data set combining the causes and characteristics of tunnel lining diseases. The detection results were compared and analyzed, and an offline tunnel lining disease detection scheme was proposed. The experimental results showed that the identification accuracy rate of SSD model was 98%, the total mean average precision (mAP) was 72%, and the detection speed was fast. The SSD model is suitable for rapid diagnosis of tunnels. The identification accuracy rate of R-FCN model was 85%, the total mAP value reached 91%, and the detection accuracy was high. The R-FCN model is suitable for the post-treatment of tunnel diseases. Using these two detection models can improve detection efficiency and accuracy.



Key wordsdeep learning      convolutional neural network      tunnel lining      tunnel disease detection      crack      leakage     
Received: 13 February 2021      Published: 05 January 2022
CLC:  U 456  
Fund:  国家自然科学基金资助项目(51774057,52074048);重庆市研究生科研创新资助项目(CYS18020)
Cite this article:

Song REN,Qian-wen ZHU,Xin-yue TU,Chao DENG,Xiao-shu WANG. Lining disease identification of highway tunnel based on deep learning. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 92-99.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.010     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/92


基于深度学习的公路隧道衬砌病害识别方法

针对与日俱增的隧道养护需求,为了节约时间与人力成本,提出基于卷积神经网络的公路隧道衬砌病害检测方法. 利用自主研制的隧道智能快速检测车采集24条隧道衬砌的图像,构建超过20 000张病害图像的高质量数据集. 结合隧道衬砌病害的成因及特点,分别构建单阶段SSD模型和两阶段R-FCN模型在自制的数据集上训练,对检测结果进行对比分析,提出离线式隧道衬砌病害检测方案. 试验结果表明,SSD模型的识别准确率为98%,总的平均精度均值(mAP)为72%,检测速度较快,适用于隧道的快速诊断. R-FCN模型的识别准确率为85%,总的mAP达到91%,检测精度较高,适用于隧道病害的后期处理. 利用这2种检测模型均可以提升检测效率和精度.


关键词: 深度学习,  卷积神经网络,  隧道衬砌,  隧道病害检测,  裂缝,  渗漏水 
Fig.1 Self-made tunnel and road intelligent rapid detection vehicle
Fig.2 LabelImg software tunnel disease image annotation interface
隧道病害种类 Ntr Nv Nt N
A 15419 2771 1949 20139
B 1991 345 257 2593
S 17410 3116 2206 22732
Tab.1 Tunnel disease data set
Fig.3 SSD network model structure
Fig.4 Tunnel disease detection scheme based on SSD framework network model
Fig.5 Tunnel disease detection scheme based on R-FCN framework network model
Fig.6 Structure of region proposal networks
Fig.7 Structure of bottleneck
Fig.8 Loss curve of SSD-Inception V2
Fig.9 Loss curve of R-FCN
模型 病害类型 P R AP mAP t/h V
SSD-Mobilenet 裂缝 0.996 0.402 0.411 0.364 $34\dfrac{1}{{6}}$ 2.06
SSD-Mobilenet 渗水 1 0.311 0.316
SSD-Inception V2 裂缝 0.996 0.757 0.769 0.728 $48\dfrac{1}{{3}} $ 3.17
SSD-Inception V2 渗水 0.988 0.673 0.687
R-FCN 裂缝 0.935 0.981 0.983 0.910 $87\dfrac{3}{{4}} $ 10.30
R-FCN 渗水 0.835 0.805 0.833
Faster R-CNN 裂缝 0.796 0.994 0.994 0.890 $84\dfrac{1}{{2}} $ 9.42
Faster R-CNN 渗水 0.886 0.790 0.791
Tab.2 Comparison of tunnel disease detection results of different convolutional neural networks
Fig.10 Comparison results of visual recognition effect of water seepage detection
Fig.11 Comparison results of visual recognition effect of crack detection
Fig.12 Detection scheme of tunnel lining disease
Fig.13 Contrast image processing of tunnel acquisition
[1]   黄宏伟, 李庆桐 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36 (12): 2861- 2871
HUANG Hong-wei, LI Qing-tong Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (12): 2861- 2871
[2]   牛晓博, 何雪婷 铁路运营隧道病害现状及检测评估[J]. 科技经济导刊, 2019, 27 (16): 86
NIU Xiao-bo, HE Xue-ting Current damage situation of railway operation tunnels and their inspection and evaluation[J]. Technology and Economic Guide, 2019, 27 (16): 86
[3]   林亮伦, 杜清超, 徐志武 重庆某隧道病害调查分析与治理对策[J]. 重庆建筑, 2018, 17 (8): 50- 53
LIN Liang-lun, DU Qing-chao, XU Zhi-wu Investigation analysis and treatments of tunnel diseases of a tunnel in Chongqing[J]. Chongqing Architecture, 2018, 17 (8): 50- 53
doi: 10.3969/j.issn.1671-9107.2018.08.50
[4]   王如路 上海轨道交通隧道结构安全性分析[J]. 地下工程与隧道, 2011, 25 (4): 37- 43
WANG Ru-lu Structural safety analysis of Shanghai rail transit tunnel[J]. Underground Engineering and Tunnel, 2011, 25 (4): 37- 43
[5]   刘海京, 夏才初, 朱合华, 等 隧道病害研究现状与进展[J]. 地下空间与工程学报, 2007, 3 (5): 947- 953
LIU Hai-jing, XIA Cai-chu, ZHU He-hua, et al Studies on tunnel damage[J]. Chinese Journal of Underground Space and Engineering, 2007, 3 (5): 947- 953
[6]   赵永贵, 刘浩, 孙宇, 等. 隧道超前预报与病害诊断技术[C]// 全国公路工程关键技术与管理信息化学术会议. 长春: 中国公路学会, 2003: 282-288.
ZHAO Yong-gui, LIU Hao, SUN Yu, et al. Tunnel advanced forecast and disease diagnosis technology [C]// Tunnel Advance Forecast and Disease Diagnosis Technology National Conference on Key Technology and Management Informationization of Highway Engineering. Changchun: China Highway Society, 2003: 282-288.
[7]   杨正华, 张文波, 王卫东, 等 浅析地震波法用于隧道病害的诊断与预测[J]. 灾害学, 2004, 19 (1): 27- 30
YANG Zheng-hua, ZHANG Wen-bo, WANG Wei-dong, et al Analysis on tunnel hazard diagnosis and forecast by seismic wave[J]. Journal of Catastrophology, 2004, 19 (1): 27- 30
doi: 10.3969/j.issn.1000-811X.2004.01.006
[8]   徐宏武 渝湘高速下塘口一号隧道突水病害诊断及处治[J]. 地下空间与工程学报, 2010, 6 (4): 845- 849
XU Hong-wu Catastrophology gushing water diagnosis and treatment of Yuxiang Speedway on Xiaotangkou No. 1 Tunnel[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (4): 845- 849
[9]   MAKANTASIS K, PROTOPAPADAKIS E, DOULAMIS A, et al. Deep convolutional neural networks for efficient vision based tunnel inspection [C]// Proceedings of the 11th International Conference on Intelligent Computer Communication and Processing. Cluj-Napoca: IEEE, 2015: 335-342.
[10]   PROTOPAPADAKIS E, DOULAMIS N. Image based approaches for tunnels defects recognition via robotic inspectors [C]// Proceedings of the 11th International Symposium on Visual Computing. Las Vegas: Springer, 2015: 706-716.
[11]   ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep Convolutional neural network [C]// Proceedings of the 23rd International Conference on Image Processing. Phoenix: IEEE, 2016: 3708-3712.
[12]   CHA Y J, CHOI W, BUYUKOZTURK O Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32 (5): 361- 378
doi: 10.1111/mice.12263
[13]   汤一平, 胡克钢, 袁公萍 基于全景图像CNN的隧道病害自动识别方法[J]. 计算机科学, 2017, 4 (11A): 207- 211
TANG Yi-ping, HU Ke-gang, YUAN Gong-ping Automatic recognition method of tunnel disease based on convolutional neural network for panoramic images[J]. Computer Science, 2017, 4 (11A): 207- 211
doi: 10.11896/j.issn.1002-137X.2017.11A.043
[14]   胡利娜 一种基于深度学习的隧道衬砌病害检测技术[J]. 山西电子技术, 2019, 47 (5): 38- 40
HU Li-na Tunnel lining disease detection technology based on deep learning[J]. Shanxi Electronic Technology, 2019, 47 (5): 38- 40
doi: 10.3969/j.issn.1674-4578.2019.05.012
[15]   薛亚东, 李宜城 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报:自然科学版, 2018, 45 (3): 100- 109
XUE Ya-dong, LI Yi-cheng A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (3): 100- 109
[16]   LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector [C]// European conference on computer vision. Cham: Springer, 2016: 21-37.
[17]   FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector [EB/OL]. [2017-01-23]. https://arxiv.org/abs/1701.06659.
[18]   JEONG J, PARK H, KAWK N. Enhancement of SSD by concatenating feature maps for object detection [EB/OL]. [2018-05-17]. https://arxiv.org/abs/1705.09587.
[19]   LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector [EB/OL]. [2017-05-26]. https://arxiv.org/abs/1712.00960v1.
[20]   卢健, 何金鑫, 李哲, 等 基于深度学习的目标检测综述[J]. 电光与控制, 2020, 27 (5): 56- 63
LU Jian, HE Jin-xin, LI Zhe, et al A survey of target detection based on deep learning[J]. Electronics Optics and Control, 2020, 27 (5): 56- 63
doi: 10.3969/j.issn.1671-637X.2020.05.012
[21]   IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [EB/OL]. [2015-03-02]. https://arxiv.org/abs/1502.03167.
[22]   SZEGEDY C, LIU W, JIA YQ, et al. Going deeper with convolutions [C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
[23]   HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2017-04-17]. https://arxiv.org/abs/1704.04861.
[24]   DAI Ji-feng, LI Yi, HE Kai-ming, et al. R-FCN: object detection via region-based fully convolutional networks [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: ACM, 2016: 379-387.
[1] Li HE,Shan-min PANG. Face reconstruction from voice based on age-supervised learning and face prior information[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1006-1016.
[2] Xue-qin ZHANG,Tian-ren LI. Breast cancer pathological image classification based on Cycle-GAN and improved DPN network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 727-735.
[3] Yun-hao WANG,Ming-hui SUN,Yi XIN,Bo-xuan ZHANG. Robot tactile recognition system based on piezoelectric film sensor[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 702-710.
[4] Jing-hui CHU,Li-dong SHI,Pei-guang JING,Wei LV. Context-aware knowledge distillation network for object detection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 503-509.
[5] Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE. Review of Chinese font style transfer research based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 510-519, 530.
[6] Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG. Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 213-224.
[7] Hong-zhe ZHANG,Xu ZHANG,Xiao-chun ZHU,Yong-jie BAO. Surface removal mechanism study of SiCp/Al composites based on single-point cutting test[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 388-397.
[8] Tong CHEN,Jian-feng GUO,Xin-zhong HAN,Xue-li XIE,Jian-xiang XI. Visible and infrared image matching method based on generative adversarial model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 63-74.
[9] Zhao-wen WANG,Hao ZHOU,Jia-wei LUO,Qi-wei WU,Ke-fa CEN. Research on thermal conductivity of storage tank foundation materials after molten salt leakage[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 137-143.
[10] Xing LIU,Jian-bo YU. Attention convolutional GRU-based autoencoder and its application in industrial process monitoring[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1643-1651.
[11] Xue-yun CHEN,Xiao-qiao HUANG,Li XIE. Classification and detection method of blood cells images based on multi-scale conditional generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1772-1781.
[12] Jia-cheng LIU,Jun-zhong JI. Classification method of fMRI data based on broad learning system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1270-1278.
[13] Li-sheng JIN,Qiang HUA,Bai-cang GUO,Xian-yi XIE,Fu-gang YAN,Bo-tao WU. Multi-target tracking of vehicles based on optimized DeepSort[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1056-1064.
[14] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[15] You-cai WAN,Lei ZHANG,Ming LI,Bin LIU,Yuan-gui MEI. Maximum dynamic equivalent leakage area while high-speed train passing through tunnels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 695-703.