Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 100-110    DOI: 10.3785/j.issn.1008-973X.2022.01.011
    
Model interactive modification method based on improved quantum genetic algorithm
Sheng-tao XIANG1(),Da WANG1,2,*()
1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
2. School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
Download: HTML     PDF(1146KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A static multi-scale finite element model interactive modification method based on improved quantum genetic algorithm was proposed aiming at the disadvantages of traditional finite element model modification methods, which are low efficiency, high cost and easy to fall into local extremums. The quantum bit vector states were encoded by real numbers according to the quantum computing theory, and the rotation angle was adaptatively updated by improving the quantum revolving gate. The improved quantum genetic algorithm was designed by introducing the quantum global interference crossover, mutation, catastrophe and other genetic operations. A multi-scale finite element model was established with a steel-concrete composite girder bridge as the engineering background. The objective function was established, the correction region was partitioned, and the maximum mutual information coefficient was used to screen the parameters and obtain the weight of the objective function. The interactive modification of static multi-scale finite element model based on improved quantum genetic algorithm was realized by Python language. Results show that the improved quantum genetic algorithm has higher performance and accuracy than the traditional genetic algorithm and quantum genetic algorithm, and the automatic interactive modification method is more efficient. The modification of material elastic modulus, thickness, vehicle load and other parameters accorded with the actual engineering test. The deflection error was reduced to 1.4%-14.3%, the stress error of concrete floor was reduced to 2.6%-18.8%, and the stress error of steel beam was reduced to 0%-11.1% compared with the initial finite element calculation.



Key wordsbridge engineering      steel-concrete composite girder bridge      improved quantum genetic algorithm      real bridge test      model interactive modification     
Received: 12 June 2021      Published: 05 January 2022
CLC:  U 441  
Fund:  国家自然科学基金资助项目(51878072);湖南省研究生科研创新资助项目(CX20190661);湖南省科技创新计划资助项目(2020RC4049)
Corresponding Authors: Da WANG     E-mail: 18390869644@163.com;yxwang2006@yeah.net
Cite this article:

Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.011     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/100


基于改进量子遗传算法的模型交互修正方法

针对传统有限元模型修正方法低效率、高成本且易陷入局部极值的缺点,提出基于改进量子遗传算法的静力多尺度有限元模型交互修正方法. 依据量子计算理论,对量子比特矢量态进行实数编码,以改进量子旋转门实现旋转角自适应更新,引入量子全局干扰交叉、变异、灾变等遗传操作,设计改进量子遗传算法. 以某钢-混组合梁桥为工程背景建立多尺度有限元模型,建立目标函数,对待修正区域进行分块处理. 利用最大互信息系数对待修正参数进行筛选,给出目标函数权重,通过Python语言实现了基于改进量子遗传算法的静力多尺度有限元模型交互修正. 结果表明,改进量子遗传算法相较于传统遗传算法、量子遗传算法具有更高的性能与精度,自动交互修正方法的效率较高,对材料弹性模量、厚度、车辆荷载等参数的修正与工程实际测试的情况基本吻合,目标函数修正结果相较于有限元计算的初始值,挠度误差降低至1.4%~14.3%,混凝土底板应力误差降低至2.6%~18.8%,钢梁应力误差降低至0%~11.1%.


关键词: 桥梁工程,  钢-混组合梁,  改进量子遗传算法,  实桥试验,  模型交互修正 
Fig.1 Diagram of global interference crossover
函数 算法 最优搜索值 均值 最优理论值
$ {f_1} $ GA 0.999 688 0.991 051 1
${f_1} $ QGA 0.999 754 0.992 084 1
${f_1} $ IQGA 0.999 991 0.999 112 1
$ {f_2} $ GA 0.240 051 0.239 887 0.240 035
${f_2} $ QGA 0.240 001 0.238 129 0.240 035
$ {f_2}$ IQGA 0.240 035 0.239 911 0.240 035
Tab.1 Comparison of GA, QGA, IQGA algorithm optimization results
Fig.2 Comparison of fitness function values of GA, QGA and IQGA optimization processes
Fig.3 Flowchart of FE model modification
Fig.4 Standard cross section of viaduct
车辆编号 Le/m W1/kN W2/kN W/kN
G1 4+1.4 80.5 322.1 402.6
G2 4+1.4 79.9 321.0 400.9
G3 4+1.4 78.6 319.0 397.6
G4 4+1.4 79.0 320.5 399.5
G5 4+1.4 78.9 321.0 399.9
G6 4+1.4 81.0 324.0 405.0
G7 4+1.4 40.5 160.1 200.6
G8 4+1.4 39.9 160.0 199.9
Tab.2 Axle load of loading vehicle
Fig.5 Muti-scale finite element model
材料 $\rho $/(kN·m?3) E/MPa ${E_{\rm{c}}}$/MPa $\upsilon $ 蠕变参数
A/10?11 n m R2
C50混凝土 24.2 34 500 0.2
Q345qd钢板 78.5 206 000 0.3
沥青混凝土 24.7 870 0.25 6.54 0.937 ?0.592 0.9326
Tab.3 Finite element model initial material parameters
Fig.6 Finite element model blocks
工况 位置 边梁目标函数 中梁目标函数 权重
1 中跨跨中 竖向挠度B1 竖向挠度Z1 0.075
混凝土底板应力B2 混凝土底板应力Z2 0.04
钢梁底板应力B3 钢梁底板应力Z3 0.05
钢梁顶板应力B4 钢梁顶板应力Z4 0.05
2 墩顶 混凝土底板应力B5 混凝土底板应力Z5 0.01
钢梁底板应力B6 钢梁底板应力Z6 0.03
钢梁顶板应力B7 钢梁顶板应力Z7 0.03
3 边跨跨中 竖向挠度B8 竖向挠度Z8 0.075
混凝土底板应力B9 混凝土底板应力Z9 0.04
钢梁底板应力B10 钢梁底板应力Z10 0.05
钢梁顶板应力B11 钢梁顶板应力Z11 0.05
Tab.4 Objective functions and weights
Fig.7 MIC heat map of parameters to be modified and objective functions
Y
Xsum
Y
Xsum
Z1 0.050 5 B1 0.0461
Z2 0.045 8 B2 0.0451
Z3 0.041 7 B3 0.0451
Z4 0.043 7 B4 0.0514
Z5 0.040 7 B5 0.0457
Z6 0.045 7 B6 0.0429
Z7 0.046 1 B7 0.0445
Z8 0.043 0 B8 0.0432
Z9 0.047 0 B9 0.0477
Z10 0.045 9 B10 0.0467
Z11 0.043 8 B11 0.0477
Tab.5 Sum of MIC values of all elements of random variable corresponding to each element of objective function
参数 块/编号 初始值 修正值 修正幅度/% 参数 块/编号 初始值 修正值 修正幅度/%
X5/mm A1 90 93 3.33 X3/mm C1 300 310 3.33
A2 90 92 2.22 C2 300 315 5.00
A3 90 95 5.56 C3 300 316 5.33
X2/MPa C1 34500 35900 4.06 C4 300 316 5.33
C2 34500 36151 4.79 C5 300 317 5.67
C3 34500 36151 4.79 C6 300 315 5.00
C4 34500 36991 7.22 C7 300 312 4.00
C5 34500 36991 7.22 C8 300 316 5.33
C6 34500 37100 7.54 C9 300 319 6.33
C7 34500 37890 9.83 C10 300 315 5.00
C8 34500 37100 7.54 C11 300 319 6.33
C9 34500 37201 7.83 C12 300 313 4.33
C10 34500 37333 8.21 C13 300 312 4.00
C11 34500 37332 8.21 C14 300 319 6.33
C12 34500 37332 8.21 C15 300 312 4.00
C13 34500 37333 8.21 C16 300 319 6.33
C14 34500 37199 7.82 C17 300 315 5.00
C15 34500 37101 7.54 C18 300 304 1.33
C16 34500 36001 4.35 C19 300 313 4.33
C17 34500 35100 1.74 C20 300 303 1.00
C18 34500 37155 7.70 C21 300 306 2.00
C19 34500 37161 7.71 X4/mm B1 1330 1320 ?0.75
C20 34500 36600 6.09 B2 1330 1329 ?0.08
C21 34500 37091 7.51 B3 1330 1328 ?0.15
X1/MPa D1 206000 209970 1.93 B10 1330 1330 0.00
D2 206000 209903 1.89 B11 1330 1327 ?0.23
D3 206000 209918 1.90 B12 1330 1329 ?0.08
D4 206000 209999 1.94 X1/MPa E1 206000 209800 1.84
D5 206000 212111 2.97 E2 206000 209953 1.92
D6 206000 211058 2.46 E3 206000 210471 2.17
D7 206000 210001 1.94 E4 206000 210513 2.19
D8 206000 210000 1.94 E5 206000 209699 1.80
D9 206000 210099 1.99 E6 206000 210987 2.42
D10 206000 212000 2.91 E7 206000 212100 2.96
D11 206000 211107 2.48 E8 206000 210117 2.00
D12 206000 210011 1.95 F1 206000 211098 2.47
D13 206000 212109 2.97 F2 206000 209987 1.94
D14 206000 210000 1.94 X6/kN G1 402.6 384 ?4.62
D15 206000 210100 1.99 G2 400.9 382.1 ?4.69
D16 206000 212010 2.92 G3 397.6 380.1 ?4.40
D17 206000 212087 2.95 G4 399.5 381.1 ?4.61
D18 206000 212033 2.93 G5 399.9 391.5 ?2.10
D19 206000 212011 2.92 G6 405 386.7 ?4.52
D20 206000 209410 1.66 G7 200.6 191.4 ?4.59
D21 206000 211099 2.48 G8 199.9 190.5 ?4.70
Tab.6 Results of parameters modification
函数值 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11
实测值 ?7.0 ?3.2 44.3 ?4.1 ?1.6 ?28.7 5.3 ?8.0 ?3.8 43.3 ?5.4
初始值 ?8.8 ?4.0 48.8 ?4.5 ?2.1 ?29.1 6.0 ?10.0 ?4.2 46.7 ?5.5
修正值 ?8.0 ?3.5 46.8 ?4.3 ?1.9 ?28.8 5.6 ?9.1 ?3.9 44.7 ?5.3
函数值 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11
实测值 ?12.0 ?2.1 30.6 ?2.7 ?1.1 ?19.4 3.0 ?14.0 ?2.5 30.6 ?3.7
初始值 ?12.9 ?2.5 33.6 ?3.2 ?1.5 ?21.1 3.4 ?14.8 ?2.7 32.6 ?4.0
修正值 ?12.3 ?2.2 32.0 ?3.0 ?1.3 ?19.6 3.1 ?14.2 ?2.7 30.8 ?3.7
Tab.7 Comparison of objective functions results and measured values
Fig.8 Comparison of objective function error before and after modification
[1]   BENEDETTINI F, GENTILE C Operational modal testing and FE model tuning of a cable-stayed bridge[J]. Engineering Structures, 2011, 33 (6): 2063- 2073
doi: 10.1016/j.engstruct.2011.02.046
[2]   梁鹏, 李斌, 王秀兰, 等 基于桥梁健康监测的有限元模型修正研究现状与发展趋势[J]. 长安大学学报:自然科学版, 2014, 34 (4): 52- 61
LIANG Peng, LI Bin, WANG Xiu-lan, et al Present research status and development trend of finite element model updating based on bridge health monitoring[J]. Journal of Chang’an University: Natural Science Edition, 2014, 34 (4): 52- 61
doi: 10.3969/j.issn.1671-8879.2014.04.009
[3]   秦世强, 胡佳, 曹鸿猷, 等 基于试验数据的大跨度拱桥有限元模型修正[J]. 中国公路学报, 2019, 32 (7): 66- 76
QIN Shi-qiang, HU Jia, CAO Hong-you, et al Finite element model updating of large-span arch bridge based on experimental data[J]. China Journal of Highway and Transport, 2019, 32 (7): 66- 76
[4]   DENG L, CAI C S Bridge model updating using response surface method and genetic algorithm[J]. Journal of Bridge Engineering, 2010, 15 (5): 553- 564
doi: 10.1061/(ASCE)BE.1943-5592.0000092
[5]   方志, 唐盛华, 张国刚, 等 基于多状态下静动态测试数据的斜拉桥模型修正[J]. 中国公路学报, 2011, 24 (1): 34- 41
FANG Zhi, TANG Sheng-hua, ZHANG Guo-gang, et al Cable-stayed bridge model updating based on static and dynamic test data of multi-state[J]. China Journal of Highway and Transport, 2011, 24 (1): 34- 41
doi: 10.3969/j.issn.1001-7372.2011.01.006
[6]   JAISHI B, REN W X Structural finite element model updating using ambient vibration test results[J]. Journal of Structural Engineering, 2005, 131 (4): 617- 628
doi: 10.1061/(ASCE)0733-9445(2005)131:4(617)
[7]   REN W X, CHEN H B Finite element model updating in structural dynamics by using the response surface method[J]. Engineering Structures, 2010, 32 (8): 2455- 2465
doi: 10.1016/j.engstruct.2010.04.019
[8]   马印平, 刘永健, 刘江 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32 (11): 51- 61
MA Yin-ping, LIU Yong-jian, LIU Jiang Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal of Highway and Transport, 2019, 32 (11): 51- 61
[9]   XING X, LIU Y, GARG A, et al An improved genetic algorithm for determining modified water-retention model for biochar-amended soil[J]. Catena, 2021, 200 (3): 105143
[10]   HAN J K Quantum-inspired evolutionary algorithms with a new termination criterion, H ε gate, and two-phase scheme[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (2): 156- 169
doi: 10.1109/TEVC.2004.823467
[11]   DAS A K, PRATIHAR D K Solving engineering optimization problems using an improved real-coded genetic algorithm (IRGA) with directional mutation and crossover[J]. Soft Computing, 2021, 25 (7): 5455- 5481
doi: 10.1007/s00500-020-05545-9
[12]   邢焕来, 潘炜, 邹喜华 一种解决组合优化问题的改进型量子遗传算法[J]. 电子学报, 2007, 35 (10): 1999- 2002
XING Huan-lai, PAN Wei, ZOU Xi-hua A novel improved quantum genetic algorithm for combinatorial optimization problems[J]. Acta Electronica Sinica, 2007, 35 (10): 1999- 2002
doi: 10.3321/j.issn:0372-2112.2007.10.034
[13]   熊焰, 陈欢欢, 苗付友, 等 一种解决组合优化问题的量子遗传算法QGA[J]. 电子学报, 2004, 32 (11): 1855- 1858
XIONG Yan, CHEN Huan-huan, MIAO Fu-you, et al A quantum genetic algorithm to solve combinatorial optimization problem[J]. Acta Electronica Sinica, 2004, 32 (11): 1855- 1858
doi: 10.3321/j.issn:0372-2112.2004.11.022
[14]   DIVINCENZO D P Two-bit gates are universal for quantum computation[J]. Physical Review A, 1995, 51 (2): 1015- 1022
doi: 10.1103/PhysRevA.51.1015
[15]   李士勇, 李盼池 基于实数编码和目标函数梯度的量子遗传算法[J]. 哈尔滨工业大学学报, 2006, 38 (8): 1216- 1218
LI Shi-yong, LI Pan-chi Quantum genetic algorithm based on real encoding and gradient information of object function[J]. Journal of Harbin Institute of Technology, 2006, 38 (8): 1216- 1218
doi: 10.3321/j.issn:0367-6234.2006.08.002
[16]   何新贵, 梁久祯 利用目标函数梯度的遗传算法[J]. 软件学报, 2001, 12 (7): 33- 38
HE Xin-gui, LIANG Jiu-zhen Genetic algorithms using gradients of object functions[J]. Journal of Software, 2001, 12 (7): 33- 38
[17]   祁正萍, 孙合明 一种改进的量子遗传算法[J]. 科学技术与工程, 2012, 12 (12): 2835- 2839
QI Zheng-ping, SUN He-ming An improved quantum genetic algorithm[J]. Science Technology and Engineering, 2012, 12 (12): 2835- 2839
doi: 10.3969/j.issn.1671-1815.2012.12.014
[18]   RESHEF D N, RESHEF Y A, FINUCANE H K, et al Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524
doi: 10.1126/science.1205438
[19]   LI X F, NI Y Q, WONG K Y, et al Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge[J]. Smart Structures and Systems, 2015, 15 (1): 99- 117
doi: 10.12989/sss.2015.15.1.099
[1] Zhi-yuan MA,Jiang LIU,Yong-jian LIU,Yi LYU,Guo-jing ZHANG. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 909-919.
[2] Wei JI,Tian-yan SHAO. Optimization analysis of double launching noses during launching construction of multi-span continuous girder bridge[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1289-1298.
[3] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[4] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[5] LI Ming, LIU Yang, YANG Xing-sheng. Random vehicle flow load effect considering axle load[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 78-88.
[6] ZHAO Ren-da, JIA Yi, ZHAN Yu-lin, WANG Yong-bao, LIAO Ping, LI Fu-hai, PANG Li-guo. Seismic mitigation and isolation design for multi-span and long-unit continuous girder bridge inmeizoseismal area[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 886-895.
[7] XIAO Xin hui, LU Nai wei, LIU Yang. Fatigue reliability assessment for highway steel bridges under stochastic traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1777-1783.
[8] XIANG Yi-qiang,LIU Cheng-xi,TANG Guo-bin,CHEN Xue-jiang,WU Tian-zhen. Modified STM model for calculating inclined section strength of
reinforcement concrete cap beam of single column pier
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1248-1254.
[9] FU Li-Wen, HONG Jin-Feng, CHENG Wei-Beng, XIANG Hua-Wei. Causes and treatments of quadrate concrete piers crack[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1738-1745.