Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 137-143    DOI: 10.3785/j.issn.1008-973X.2022.01.015
    
Research on thermal conductivity of storage tank foundation materials after molten salt leakage
Zhao-wen WANG(),Hao ZHOU*(),Jia-wei LUO,Qi-wei WU,Ke-fa CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(3507KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The thermal properties of accumulated ceramsites in the storage tank foundation after molten salt leakage were analyzed by the finite element simulation based on real three-dimensional volume reconstruction from XCT in order to model the tank structure design and heat storage system of solar power plant. The working conditions with three different particle size ratios were analyzed. The microstructure was characterized while the thermal conductivity was estimated. Influences of molten salt leakage on thermal physical properties of accumulated ceramsites in the foundation were analyzed. The porosity of the accumulated ceramsites after molten salt leakage under three working conditions was 30.1%, 30.7% and 29.9% respectively, and the finite element simulation results of thermal conductivity were 0.505, 0.476 and 0.478 W/(m·K). The porosity was reduced by more than 50% and the thermal conductivity increased by 4.0 to 5.0 times after molten salt leakage.



Key wordsthermal conductivity      X-ray computed microtomography      molten salt tank foundation      three-phase threshold segmentation      molten salt leakage     
Received: 17 March 2021      Published: 05 January 2022
CLC:  TK 16  
Fund:  国家自然科学基金资助项目(52036008)
Corresponding Authors: Hao ZHOU     E-mail: 3120101339@zju.edu.cn;zhouhao@zju.edu.cn
Cite this article:

Zhao-wen WANG,Hao ZHOU,Jia-wei LUO,Qi-wei WU,Ke-fa CEN. Research on thermal conductivity of storage tank foundation materials after molten salt leakage. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 137-143.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.015     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/137


储罐地基材料在熔盐泄露后的导热系数研究

为了对太阳能发电厂储罐结构设计和储热系统进行建模,基于XCT技术,在真实三维体重建的基础上,利用有限元模拟的方法,研究3种不同粒径配比的储罐基础内的堆积陶粒在熔盐泄露后的热物性,分析微观结构并估算导热系数. 探究熔盐泄露后对熔盐罐地基内堆积陶粒热物性的影响. 3种工况下熔盐泄露后的堆积陶粒的孔隙体积分数分别为30.1%、30.7%和29.9%,导热系数的有限元模拟结果分别为0.505、0.476和0.478 W/(m·K). 熔盐泄露后,孔隙体积分数降低了50%以上,导热系数提高了4.0~5.0倍.


关键词: 导热系数,  X射线计算机显微断层成像,  熔盐罐基础,  三相阈值分割,  熔盐泄漏 
项目 t/℃
c/(J·kg?1·K?1) 0.172t + 1443.0
ρ/(kg·m?3) ?0.636t + 2090.0
λ/(W·m?1·K?1) 0.00019t + 0.44
wN/% 99.6
wCl/% 0.02
wim/% 0.01
wMg/% 0.001
Tab.1 Thermophysical properties and components of solar salt
Fig.1 Schematic diagram of mould device for sample preparation
工况 wc/%
d<5.6 mm d = 5.6~8.0 mm d = 8.0~11.2 mm d>11.2 mm
工况 1 [9] 39 36 15 10
工况 2 [8] 24 49 11 16
工况 3 100
Tab.2 Mass fraction of particle diameters for ceramsites in experimental cases
Fig.2 Samples for three cases with different particle diameters
Fig.3 Schematic diagram of Nano voxel 4000 series XCT experimental equipment
Fig.4 Three-dimensional reconstruction and pore distribution of samples for three cases
Fig.5 Processing and analysis process of CT images
%
工况 φs φc φp
1 40.4 29.5 30.1
2 45.3 24.0 30.7
3 48.1 22.0 29.9
Tab.3 Volume fraction of salt, ceramisite and pore
Fig.6 Frequency distribution of pore diameter in samples
W/(m·K)
工况 λs
X Y Z 平均值 标准差
1 0.509 0.504 0.503 0.505 0.003
2 0.480 0.475 0.474 0.476 0.003
3 0.476 0.479 0.480 0.478 0.002
Tab.4 Simulated values of heat conductivity in three directions
Fig.7 Isotherm curve of effective thermal conductivity simulation along X direction
工况 φp/% λs/
(W·m?1·K?1
λm/
(W·m?1·K?1
σ/%
1 30.1 0.505 0.496 1.8
2 30.7 0.476 0.473 0.6
3 29.9 0.478 0.483 1.0
Tab.5 
[1]   沈烨烨. 燃料电池DC-DC变换器建模与控制[D]. 杭州: 浙江大学, 2014.
SHEN Ye-ye. Modeling and control of fuel cell DC-DC converter [D]. Hangzhou: Zhejiang University, 2014.
[2]   霍雅勤 化石能源的环境影响及其政策选择[J]. 中国能源, 2000, (5): 15- 19
HUO Ya-qin Environmental impact of fossil energy and policy options[J]. Energy of China, 2000, (5): 15- 19
[3]   中国石化 《BP世界能源统计年鉴》2020版发布[J]. 中国石化, 2020, (6): 6
Sinopec The BP Statistical Yearbook of World Energy 2020 was released[J]. Sinopec, 2020, (6): 6
[4]   钱璇, 姚永强, 李俊荣, 等 太阳选址全国日照条件分析[J]. 天文学报, 2012, 53 (2): 171- 180
QIAN Xuan, YAO Yong-qiang, LI Jun-rong, et al Analysis of sunshine conditions in the country[J]. Acta Astronomica Sinica, 2012, 53 (2): 171- 180
doi: 10.3969/j.issn.0001-5245.2012.02.009
[5]   RODRIGUEZ I, PEREZ-SEGARRA C D, LEHMKUHL O, et al Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants[J]. Applied Energy, 2013, 109 (9): 402- 414
[6]   ZHOU H, SHI H, LAI Z Y, et al Migration and phase change study of leaking molten salt in tank foundation material[J]. Applied Thermal Engineering, 2020, 170 (4): 114968
[7]   TORRAS S, PÉREZ-SEGARRA C, RODRÍGUEZ I, et al Parametric study of two-tank TES systems for CSP plants[J]. Energy Procedia, 2015, 69 (5): 1049- 1058
[8]   SCHULTEFISCHEDICK J, TAMME R, HERRMANN U. CFD analysis of the cool down behaviour of molten salt thermal storage systems [C]// Proceedings of the ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. Florida: ASME, 2008.
[9]   ZHOU H, WANG Z, ZHOU M, et al Thermal properties, permeability and compressive strength of highly porous accumulated ceramsites in the foundation of salt tank for concentrate solar power plants[J]. Applied Thermal Engineering, 2019, 164 (9): 114451
[10]   ZHOU H, WANG Z, ZHOU M, et al Experimental measurements and XCT based simulation of effective thermal conductivity of stacked ceramsites in molten-salt tank foundation[J]. Heat and Mass Transfer, 2019, 55 (11): 3103- 3115
doi: 10.1007/s00231-019-02646-6
[11]   田松, 崔晓春 采用光纤测温的方法检测熔盐罐泄漏[J]. 太阳能, 2017, (7): 43- 45
TIAN Song, CUI Xiao-chun The leakage of molten salt tank was detected by optical fiber temperature measurement[J]. Solar Energy, 2017, (7): 43- 45
doi: 10.3969/j.issn.1003-0417.2017.07.007
[12]   郭晓娟, 丁旃, 秦贯丰, 等 高温熔融盐蓄热系统的若干工程问题[J]. 储能科学与技术, 2015, 4 (1): 32- 43
GUO Xiao-juan, DING Zhan, QIN Guan-feng, et al Some engineering problems of high temperature molten salt heat storage system[J]. Energy Storage Science and Technology, 2015, 4 (1): 32- 43
doi: 10.3969/j.issn.2095-4239.2015.01.003
[13]   GOMES A, NAVAS M, URANGA N, et al High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten solar salt[J]. Solar Energy, 2018, 177 (1): 408- 419
[14]   FLUECKIGER S, YANG Z, GARIMELL S V An integrated thermal and mechanical investigation of molten-salt thermocline energy storage[J]. Applied Energy, 2011, 88 (6): 2098- 2105
doi: 10.1016/j.apenergy.2010.12.031
[15]   周天, 袁杰, 马爱纯 基于相变线源解的固液热导率测量方法及其影响因素分析[J]. 中南大学学报:自然科学版, 2021, 52 (1): 276- 284
ZHOU Tian, YUAN Jie, MA Ai-chun Solid-liquid thermal conductivity measurement method based on phase-varying linear source solution and analysis of its influencing factors[J]. Journal of Central South University: Science and Technology, 2021, 52 (1): 276- 284
[16]   张绩松, 王晓娜, 侯德鑫, 等 基于激光热成像的局部导热系数测试[J]. 激光与红外, 2020, 50 (12): 1426- 1432
ZHANG Ji-song, WANG Xiao-na, HOU De-xin, et al Measurement of local thermal conductivity based on laser thermal imaging[J]. Laser and Infrared, 2020, 50 (12): 1426- 1432
doi: 10.3969/j.issn.1001-5078.2020.12.002
[17]   田英良, 刘亚茹, 李建峰, 等 超薄玻璃导热系数测量方法及影响因素[J]. 硅酸盐通报, 2020, 39 (7): 2291- 2296
TIAN Ying-liang, LIU Ya-ru, LI Jian-feng, et al Measurement method and influencing factors of thermal conductivity of ultra-thin glass[J]. Bulletin of the Chinese Ceramic Society, 2020, 39 (7): 2291- 2296
[18]   汤玉婷, 徐屾, 张恒运 点加热稳态导热系数测量方法研究[J]. 热能动力工程, 2020, 35 (4): 163- 168
TANG Yu-ting, XU Shen, ZHANG Heng-yun Study on measurement method of steady-state thermal conductivity of point heating[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (4): 163- 168
[19]   QU M L, TIAN S Q, FAN L W, et al An experimental investigation and fractal modeling on the effective thermal conductivity of novel autoclaved aerated concrete (AAC)-based composites with silica aerogels (SA)[J]. Applied Thermal Engineering, 2020, 179 (10): 115770
[20]   KARAWACKI E, SULEIMAN B M, UL-HAQ I, et al An extension to the dynamic plane source technique for measuring thermal conductivity, thermal diffusivity, and specific heat of dielectric solids[J]. Review of Scientific Instruments, 1992, 63 (10): 4390- 4397
doi: 10.1063/1.1143739
[21]   SCHARLI U, RYBACH L On the thermal conductivity of low-porosity crystalline rocks[J]. Tectonophysics, 1984, 103 (1-4): 307- 313
doi: 10.1016/0040-1951(84)90092-1
[22]   MOLINA J M, PRIETO R, NARCISO J, et al The effect of porosity on the thermal conductivity of Al–12 wt. % Si/SiC composites[J]. Scripta Materialia, 2009, 60 (7): 582- 585
doi: 10.1016/j.scriptamat.2008.12.015
[23]   公维宽, 王伟强 CT三维重构煤体结构及瓦斯渗流数值模拟[J]. 煤矿安全, 2020, 51 (11): 19- 23
GONG Wei-kuan, WANG Wei-qiang 3D reconstruction of coal structure and gas seepage numerical simulation in CT[J]. Safety in Coal Mines, 2020, 51 (11): 19- 23
[24]   HAJIZADEH A, SAFEKORDI A, FARHADPOUR F A A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images[J]. Advances in Water Resources, 2011, 34 (10): 1256- 1267
doi: 10.1016/j.advwatres.2011.06.003
[25]   周明熙, 周昊, 马鹏楠, 等 基于CT显微图像的烧结矿孔隙特征分析及有效热导率预测[J]. 化工学报, 2018, 69 (2): 633- 641
ZHOU Ming-xi, ZHOU Hao, MA Peng-nan, et al Analysis of pore characteristics and prediction of effective thermal conductivity of sinter based on CT microscopic images[J]. Journal of Chemical Industry and Engineering(China), 2018, 69 (2): 633- 641
[26]   RANUT P, NOBILE E, MANCINI L High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams[J]. Experimental Thermal and Fluid Science, 2015, 67 (10): 30- 36
[27]   KARTHIK K B, JAYATHI Y M, SURESH V G Microtomography-based simulation of transport through open-cell metal foams[J]. Numerical Heat Transfer, 2010, 58 (7): 527- 544
doi: 10.1080/10407782.2010.511987
[28]   GUIGNOT N, KING A, BOULARD E Synchrotron X-ray computed microtomography for high pressure science[J]. Journal of Applied Physics, 2020, 127 (24): 240901
doi: 10.1063/5.0008731
[29]   MIHALCEA E, VERGARA-HERNÁNDEZ H J, OLMOS L, et al. X-ray computed microtomography characterization of Ti6Al4V/CoCrMo biomedical composite fabricated by semi-solid sintering [EB/OL]. (2021-01-03). https://link.springer.com/article/10.1007/s10921-020-00742-w#citeas.
[30]   杜凤丽. 命运多舛的美国首座商业化熔盐塔式光热电站有望重新投运 [EB/OL]. (2021-08-30). http://cnste.org/html/xiangmu/2021/0830/8198.html.
DU Feng-li. The ill fated first commercial molten salt tower photothermal power plant in the United States is expected to be put into operation again [EB/OL]. (2021-08-30). http://cnste.org/html/xiangmu/2021/0830/8198.html.
[31]   FERRI R, CAMMI A, MAZZEI D Molten salt mixture properties in RELAP5 code for thermodynamic solar applications[J]. International Journal of Thermal Sciences, 2008, 47 (12): 1676- 1687
doi: 10.1016/j.ijthermalsci.2008.01.007
[32]   谭昌伟, 王纪华, 黄义德, 等 运用光谱技术改进Beer-Lambert定律的定量化及其应用研究[J]. 中国农业科学, 2005, 38 (3): 498- 503
TAN Chang-wei, WANG Ji-hua, HUANG Yi-de, et al Improving the quantification and application of the Beer-Lambert law by spectroscopic technique[J]. Scientia Agricultura Sinica, 2005, 38 (3): 498- 503
doi: 10.3321/j.issn:0578-1752.2005.03.011
[33]   IVERSON B D, BROOME S T, KRUIZENGA A M, et al Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase[J]. Solar Energy, 2012, 86 (10): 2897- 2911
doi: 10.1016/j.solener.2012.03.011
[1] Shuai-lin WANG,Lei SHENG,Li-na QI,Yi-dong FANG,Kang LI,Lin SU. Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1986-1992.
[2] Hong-kun LV,Yu-hao WU,Yan-hao FENG,Ming-jun WANG,Zi-tao YU. Measurement of thermal conductivity of backfill soil for buried power cable[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1971-1977.
[3] Xuan LIU,Jiang-hong WU,Ting XIAN,Ye FENG. Preparation and properties of CaCl2?6H2O/ expanded graphite composite phase change materials[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1291-1297.
[4] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[5] ZHOU Er zhen, YING Ji. Thermal and electrical conductivity of carbon nanotube arrays/epoxy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1671-1676.
[6] YAO Xiao-li, YI Si-yang, FAN Li-wu, XU Xu, YU Zi-tao, GE Jian.
Effective thermal conductivity of moist aerated concrete with different porosities
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1101-1107.
[7] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 330-335.
[8] XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,XU Xu,YU Zi-tao,HU Ya-cai. Numerical investigation of influence of nanofillers on performance of energy storage-based heat sink[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1644-1649.
[9] LUO Kun, JIN Tai, FAN Jian-ren, CEN Ke-fa. Effects of mesh size on droplet evaporation[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2176-2180.
[10] SHU E-Na, XU Jian, FENG Jian-Jiang. Laboratory experimenton thermal conductivity of silty clay[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 180-183.