Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Effect of hybrid nanofillers on thermal conductivity of composite phase change materials
DING Qing1, FANG Xin1, FAN Li-wu1, CHENG Guan-hua2, YU Zi-tao1, HU Ya-cai1
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China;2. Zhejiang Energy and Radiation Institute, Hangzhou 310012, China
Download:   PDF(1577KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the effect of hybrid nanofillers on the thermal conductivity of composite phase change materials(PCMs), organic composite PCMs filled with carbon nanotubes and silver (or alumina) nanoparticles as binary nanofillers were prepared. The effective thermal conductivity of the samples in solid phase was measured using the transient plane source technique at room temperature. The influence of the total loading, ratio of carbon nanotubes to nanoparticles, and base PCMs on the effective thermal conductivity of the composite PCMs were investigated experimentally. It was shown that the carbon nanotubes and nanoparticles act against each other. The thermal conductivity enhancement of the composite PCMs due to the presence of hybrid nanofillers is even lower than that with pure carbon nanotubes or nanoparticles. The relatively low total loadings (up to 1.5 vol%) of the nanofillers are not sufficient to lead to formation of effective heat conduction networks. This was confirmed by the microscopic images taken on the dispersion of nanofillers. Despite the existence of fairly uniform dispersion of the hybrid nanofillers, the desired synergetic effect between the dissimilar nanofillers is absent as a result of both the difference in their heat conduction mechanisms and the relatively high thermal interface resistance. The unfavorable effect occurs instead when the heat conduction paths are blocked within each type of nanofillers.



Published: 01 February 2015
CLC:  TK 124  
Cite this article:

DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 330-335.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.02.020     OR     http://www.zjujournals.com/eng/Y2015/V49/I2/330


混合纳米填料对复合相变材料导热系数的影响

为了研究混合纳米填料对复合相变材料导热系数的影响,制备以碳纳米管和银(或氧化铝)纳米颗粒为二元混合填料的有机类复合相变材料.采用瞬态平面热源法导热仪对复合相变材料在室温下固态时的有效导热系数进行测试.研究中综合考虑填料总加载量、碳纳米管/纳米颗粒的配比以及基底相变材料对复合相变材料有效导热系数的影响.实验结果表明,碳纳米管和纳米颗粒填料之间是互相抑制的,混合纳米填料所导致的复合相变材料导热系数增长甚至低于仅添加单一碳纳米管或纳米颗粒时的效果.在本研究所关注的较低的总加载量下(最高体积分数为1.5%),尚不足以构建出能够实现混合填料协同效果的有效导热网络.纳米填料分布的微观表征图片证实,虽然混合填料各自的分布都较为均匀,但导热机理的差异和较高的界面热阻使得不同纳米填料之间无法体现出理想的协同效应,反而导致当单一纳米填料之间的导热通路被破坏时会呈现出反效果.

[1] FARID M M,KHUDHAIR A M,RAZACK S A K,et al. A review on phase change energy storage: materials and applications [J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615.
[2] FAN Liwu,KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24-46.
[3] KHODADADI J M,FAN Li-wu,BABAEI H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review [J]. Renewable and Sustainable Energy Reviews, 2013, 24: 418-444.
[4] SHAIKH S, LAFDI K, HALLINAN K. Carbon nanoadditives to enhance latent energy storage of phase change materials [J]. Journal of Applied Physics, 2008, 103(9): 094302.
[5] WANG Ji-fen,XIE Hua-qing,XIN Zhong. Thermal properties of heat storage composites containing multiwalled carbon nanotubes [J]. Journal of Applied Physics, 2008, 104(11): 113-537.
[6] WANG Ji-fen,XIE Hua-qing,XIN Zhong. Thermal properties of paraffin based composites containing multiwalled carbon nanotubes [J]. Thermochimica Acta, 2009, 488(1/2): 39-42.
[7] ZENG Ju-lan,CAO Zhong,YANG Dao-wu,et al. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM [J]. Journal of Thermal Analysis and Calorimetry, 2009, 95(2): 507-512.
[8] WANG Ji-fen,XIE Hua-qing,XIN Zhong,et al. Enhancing thermal conductivity of palmitic acid base phase change materials with carbon nanotubes as fillers [J]. Solar Energy, 2010, 84(2): 339-344.
[9] WANG Ji-fen, XIE Hua-qing, XIN Zhong, et al. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes [J]. Carbon, 2010, 48(14): 3979-3986.
[10] CUI Yan-bin, LIU Cai-hong, HU Shan,et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials [J]. Solar Energy Materials and Solar Cells, 2011, 95(4): 1208-1212.
[11] JIN Pei-jun,SUN Huan-huan, ZHONG Yun-xia, et al. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes [J]. Chemical Engineering Science, 2012, 81(22): 140-145.
[12] JIANG Lin-qin, GAO Lian. Densified multiwalled carbon nanotubes-titanium nitride composites with enhanced thermal properties [J]. Ceramics International, 2008, 34(1): 231-235.
[13] YANG Kai,GU Ming-yuan. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube /silane-modified nano-sized silicon carbide [J]. Composites Part A, 2010, 41(2): 215-221.
[14] TENG Chih-chun,MA Chen-chi M,CHIOU Kuo-chan,et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites [J]. Materials Chemistry and Physics, 2011, 126(3): 722-728.
[15] IM H,KIM J. The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly (dimethylsiloxane) composites [J]. Carbon, 2011, 49(11):3503-3501.
[16] MA Ai-jie, CHEN Wei-xing, HOU Yong-gang. Enhanced thermal conductivity of epoxy composites with MWCNTs/AlN hybrid filler [J]. Polymer Plastics Technology and Engineering, 2012, 51(15): 1578-1582.
[17] MOHAMMADALI B, ALIMORAD R, DAVOOD R, et al. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids [J]. Thermochimica Acta, 2012, 549: 87-94.
[18] CHEN Li-fei, YU Wei, XIE Hua-qing. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites [J]. Powder Technology, 2012, 231: 18-20.

[1] LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2113-2119.
[2] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2087-2093.
[3] ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1859-1864.
[4] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[5] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 681-690.
[6] FENG Zhao zan, LI Jun ye, LI Wei. Heat transfer characteristics of subcooled flow boiling in one sided heating mini gap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 671-682.
[7] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 477-484.
[8] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.
[9] LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 306-311.
[10] DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you. Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1478-1486.
[11] ZHANG Jing-zhi, LI Wei. Numerical simulation of gas-liquid Taylor flow in mini/micro tubes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1572-1576.
[12] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1242-1248.
[13] HUANG Lian-feng,TIAN Fu-you,LI Qing,FAN Li-wu,YU Zi-tao,WU Hai-yun. Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 916-923.
[14] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai1. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 1-2.
[15] GUO Hai, NI Yi-hua, WANG Jin, LU Guo-dong. Multi-objective performance optimization method of automotive air-conditioning condenser[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 142-159.