Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 128-136    DOI: 10.3785/j.issn.1008-973X.2022.01.014
    
Nearshore coupled wave-current model based on new three-dimensional radiation stress formulation
Chao JI1(),Qing-he ZHANG2,*(),Dian-guang MA1,Yue-feng WU2,Qi JIANG3
1. Key Laboratory of Engineering Sediment, Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China
2. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
3. CCCC First Harbor Consultants Limited Company, Tianjin 300222, China
Download: HTML     PDF(1991KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three-dimensional coupled wave-current model was established based on a new three-dimensional radiation stress formulation including the beach slope effects in order to reasonably simulate the nearshore waves and circulations. Two kinds of surface roller models were implemented, and the wave-induced horizontal turbulent mixing effects were included in the coupled model. A number of experimental cases were used to validate the established model. The validation results show that the model can accurately simulate the nearshore wave propagation and various wave-induced circulation phenomena, including the wave setup, longshore current, undertow and rip current. The present wave-current coupling system can comprehensively describe the nearshore wave-current interaction, and the new three-dimensional radiation stress formulation used in the model can provide better performances than the other formulations for vertical flow structure simulations. The different surface roller models were used to obtain more accurate simulation results for different nearshore circulation cases, indicating that a more generally appropriate surface roller model requires further investigation. The wave-induced horizontal turbulent mixing can make the flow field smoother and avoid a too sharp velocity distribution.



Key wordsthree-dimensional radiation stress      coupled model      wave-current interaction      wave-induced circulation      surface roller      wave-induced turbulent mixing     
Received: 18 January 2021      Published: 05 January 2022
CLC:  P 753  
Fund:  国家自然科学基金资助项目(U1906231,51679161);中央级公益性科研院所基本科研业务费资助项目(TKS20200410)
Corresponding Authors: Qing-he ZHANG     E-mail: jichao@tiwte.ac.cn;qhzhang@tju.edu.cn
Cite this article:

Chao JI,Qing-he ZHANG,Dian-guang MA,Yue-feng WU,Qi JIANG. Nearshore coupled wave-current model based on new three-dimensional radiation stress formulation. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 128-136.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.014     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/128


基于新型三维辐射应力的近岸波流耦合模型

为了合理模拟近岸波流运动,基于考虑海底坡度影响的新型三维辐射应力公式,建立近岸三维波流耦合数学模型. 该模型引入2种波面水滚模式,考虑波浪附加水平紊动效应. 采用大量实测数据对所建模型进行验证. 结果表明,利用该模型可以较好地模拟近岸波浪传播以及增减水、沿岸流、底部离岸流、裂流等不同的近岸波生流现象. 该模型采用的波流耦合方式能够全面地反映近岸波流的相互作用,新型三维辐射应力公式较其他公式可以更准确地描述波生流的垂向结构. 对于不同的近岸流算例,获得更准确的模拟结果可能需要采用不同的水滚模式,说明更具普适性的水滚模型有待进一步的研究. 考虑波浪水平紊动会使模型计算出的流速平面分布更平滑,避免出现过于突兀的流场结果.


关键词: 三维辐射应力,  耦合模型,  波流相互作用,  波生流,  波面水滚,  波浪附加紊动 
Fig.1 Information exchange between model components
Fig.2 Validation of wave height, wave setup and setdown, and longshore current for experiment with oblique wave incidence
Fig.3 Validation of wave height, wave setup and setdown, and undertow for experiment with normal wave incidence
Fig.4 Validation of wave height for DUCK94 experiment
Fig.5 Validation of vertical profiles of wave-induced nearshore circulation for DUCK94 experiment
Fig.6 Wave and flow fields from model simulations for rip current case
Fig.7 Validation of normalized cross-shore velocities in different cross-shore transects for rip current case
Fig.8 Simulated wave fields by only wave model and coupled model for test T of rip experiment
Fig.9 Comparison of simulated wave height distributions in cross-shore transect located at y = 8.5 m by only wave model and coupled model with measured data for test T of rip experiment
Fig.10 Comparison of undertow from model simulations using different radiation stress formulations with measured data
Fig.11 Comparison of normalized cross-shore velocities from model simulations using different radiation stress formulations with measured data for rip current case
Fig.12 Comparison of wave setup and setdown, and longshore current from model simulations using different surface roller models with measured data
Fig.13 Comparison of undertow from model simulations using different surface roller models with measured data
Fig.14 Effects of wave-induced horizontal turbulent mixing on longshore current distributions
Fig.15 Effects of wave-induced horizontal turbulent mixing on rip current distributions
[1]   XIA M, MAO M, NIU Q Implementation and comparison of the recent three-dimensional radiation stress theory and vortex-force formalism in an unstructured-grid coastal circulation model[J]. Estuarine, Coastal and Shelf Science, 2020, 240: 106771
doi: 10.1016/j.ecss.2020.106771
[2]   MELLOR G On surf zone fluid dynamics[J]. Journal of Physical Oceanography, 2021, 51 (1): 37- 46
doi: 10.1175/JPO-D-19-0318.1
[3]   MELLOR G The three-dimensional current and surface wave equations[J]. Journal of Physical Oceanography, 2003, 33 (9): 1978- 1989
doi: 10.1175/1520-0485(2003)033<1978:TTCASW>2.0.CO;2
[4]   MELLOR G The depth-dependent current and wave interaction equations: a revision[J]. Journal of Physical Oceanography, 2008, 38 (11): 2587- 2596
doi: 10.1175/2008JPO3971.1
[5]   MELLOR G A combined derivation of the integrated and vertically resolved, coupled wave-current equations[J]. Journal of Physical Oceanography, 2015, 45 (6): 1453- 1463
doi: 10.1175/JPO-D-14-0112.1
[6]   ZHANG D. Numerical simulation of large-scale waves and currents [D]. Singapore: National University of Singapore, 2004.
[7]   WARNER J C, SHERWOOD C R, SIGNELL R P, et al Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model[J]. Computers and Geosciences, 2008, 34 (10): 1284- 1306
doi: 10.1016/j.cageo.2008.02.012
[8]   张敬. 海岸、河口区三维近岸环流与物质输运数值研究[D]. 青岛: 中国海洋大学, 2010.
ZHANG Jing. Numerical study of nearshore circulation and substance transport in coastal and estuary areas [D]. Qingdao: Ocean University of China, 2010.
[9]   BOLAÑOS R, OSUNA P, WOLF J, et al Development of the POLCOMS-WAM current-wave model[J]. Ocean Modelling, 2011, 36 (1/2): 102- 115
[10]   王平. 非结构波流耦合模型及近岸物质输运应用研究[D]. 大连: 大连理工大学, 2014.
WANG Ping. An unstructured wave-current coupled model and its application in the nearshore mass transport [D]. Dalian: Dalian University of Technology, 2014.
[11]   MARSOOLI R, ORTON P M, MELLOR G, et al A coupled circulation-wave model for numerical simulation of storm tides and waves[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34 (7): 1449- 1467
doi: 10.1175/JTECH-D-17-0005.1
[12]   ARDHUIN F, JENKINS A D, BELIBASSAKIS K A Comments on "The three-dimensional current and surface wave equations"[J]. Journal of Physical Oceanography, 2008, 38 (6): 1340- 1350
doi: 10.1175/2007JPO3670.1
[13]   ARDHUIN F, SUZUKI N, MCWILLIAMS J C, et al Comments on "A combined derivation of the integrated and vertically resolved, coupled wave-current equations"[J]. Journal of Physical Oceanography, 2017, 47 (9): 2377- 2385
doi: 10.1175/JPO-D-17-0065.1
[14]   BENNIS A C, ARDHUIN F, DUMAS F On the coupling of wave and three-dimensional circulation models: choice of theoretical framework, practical implementation and adiabatic tests[J]. Ocean Modelling, 2011, 40 (3/4): 260- 272
[15]   UCHIYAMA Y, MCWILLIAMS J C, SHCHEPETKIN A F Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone[J]. Ocean Modelling, 2010, 34 (1/2): 16- 35
[16]   KUMAR N, VOULGARIS G, WARNER J C, et al Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications[J]. Ocean Modelling, 2012, 47: 65- 95
doi: 10.1016/j.ocemod.2012.01.003
[17]   ZHENG P, LI M, VAN DER A D A, et al A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism[J]. Ocean Modelling, 2017, 116: 48- 69
doi: 10.1016/j.ocemod.2017.06.003
[18]   NGUYEN D T, JACOBSEN N G, ROELVINK D Development and validation of quasi-Eulerian mean three-dimensional equations of motion using the generalized Lagrangian mean method[J]. Journal of Marine Science and Engineering, 2021, 9 (1): 76
doi: 10.3390/jmse9010076
[19]   JI C, ZHANG Q, WU Y Derivation of three-dimensional radiation stress based on Lagrangian solutions of progressive waves[J]. Journal of Physical Oceanography, 2017, 47 (11): 2829- 2842
doi: 10.1175/JPO-D-16-0277.1
[20]   CHEN C, LIU H, BEARDSLEY R C An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20 (1): 159- 186
doi: 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
[21]   CHEN C, HUANG H, BEARDSLEY R C, et al A finite volume numerical approach for coastal ocean circulation studies: comparisons with finite difference models[J]. Journal of Geophysical Research: Oceans, 2007, 112: C03018
[22]   MELLOR G, YAMADA T Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20 (4): 851- 875
doi: 10.1029/RG020i004p00851
[23]   解鸣晓, 张玮 近岸波生流运动三维数值模拟及验证[J]. 水科学进展, 2011, 22 (3): 391- 399
XIE Ming-xiao, ZHANG Wei 3D numerical modeling of nearshore wave-induced currents[J]. Advances in Water Science, 2011, 22 (3): 391- 399
[24]   SVENDSEN I A Wave heights and set-up in a surf zone[J]. Coastal Engineering, 1984, 8 (4): 303- 329
doi: 10.1016/0378-3839(84)90028-0
[25]   RENIERS A J H M, ROELVINK J A, THORNTON E B Morphodynamic modeling of an embayed beach under wave group forcing[J]. Journal of Geophysical Research: Oceans, 2004, 109: C01030
[26]   LARSON M, KRAUS N C Numerical model of longshore current for bar and trough beaches[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1991, 117 (4): 326- 347
doi: 10.1061/(ASCE)0733-950X(1991)117:4(326)
[27]   SMAGORINSKY J General circulation experiments with the primitive equations, I. the basic experiment[J]. Monthly Weather Review, 1963, 91 (3): 99- 164
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[28]   BOOIJ N, RIS R C, HOLTHUIJSEN L H A third-generation wave model for coastal regions, 1. model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104 (C4): 7649- 7666
doi: 10.1029/98JC02622
[29]   DIETRICH J C, ZIJLEMA M, ALLIER P E, et al Limiters for spectral propagation velocities in SWAN[J]. Ocean Modelling, 2013, 70: 85- 102
doi: 10.1016/j.ocemod.2012.11.005
[30]   CHEN T, ZHANG Q, WU Y, et al Development of a wave-current model through coupling of FVCOM and SWAN[J]. Ocean Engineering, 2018, 164: 443- 454
doi: 10.1016/j.oceaneng.2018.06.062
[31]   KIRBY J T, CHEN T M Surface waves on vertically sheared flows: approximate dispersion relations[J]. Journal of Geophysical Research: Oceans, 1989, 94 (C1): 1013- 1027
doi: 10.1029/JC094iC01p01013
[32]   张振伟. 波生流垂向分布规律和模拟[D]. 大连: 大连理工大学, 2013.
ZHANG Zhen-wei. Feature of the vertical distribution of wave induced currents with experimental and numerical simulations [D]. Dalian: Dalian University of Technology, 2013.
[33]   TING F C K Laboratory study of wave and turbulence velocities in a broad-banded irregular wave surf zone[J]. Coastal Engineering, 2001, 43 (3/4): 183- 208
[34]   GARCEZ FARIA A F, THORNTON E B, STANTON T P, et al Vertical profiles of longshore currents and related bed shear stress and bottom roughness[J]. Journal of Geophysical Research: Oceans, 1998, 103 (C2): 3217- 3232
doi: 10.1029/97JC02265
[35]   GARCEZ FARIA A F, THORNTON E B, LIPPMANN T C, et al Undertow over a barred beach[J]. Journal of Geophysical Research: Oceans, 2000, 105 (C7): 16999- 17010
doi: 10.1029/2000JC900084
[36]   HAAS K A, SVENDSEN I A Laboratory measurements of the vertical structure of rip currents[J]. Journal of Geophysical Research: Oceans, 2002, 107 (C5): 3047
doi: 10.1029/2001JC000911
[37]   HALLER M C, DALRYMPLE R A, SVENDSEN I A Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research: Oceans, 2002, 107 (C6): 3061
doi: 10.1029/2001JC000955
[1] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[2] Peng HU,Jian-jian HAN,Yun-long LEI. Coupled modeling of sediment-laden flows based on local-time-step approach[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 743-752.
[3] HU Qian-yun, CHANG Xiao-lin, FENG Chu-qiao, ZHOU Wei, MA Gang. Study of meso-damage characteristics of concrete based on properties evolution theory[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1596-1604.
[4] HU Chen, SUN Zhi-lin, Dale A. Kiefer, LI Ming-jia. One-dimensional physical-biological coupled model for marine primary production[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 1002-1013.