Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1291-1297    DOI: 10.3785/j.issn.1008-973X.2019.07.007
Mechanical and Energy     
Preparation and properties of CaCl2?6H2O/ expanded graphite composite phase change materials
Xuan LIU(),Jiang-hong WU*(),Ting XIAN,Ye FENG
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
Download: HTML     PDF(1167KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A composite phase change materials (PCM) was prepared by physical adsorption method with CaCl2·6H2O as PCM, expanded graphite (EG) as carrier and SrCl2·6H2O as nucleating agent in order to improve the heat storage-release property of CaCl2·6H2O. The thermophysical properties of the PCM were analyzed. The cooling curve was used to analyze the degree of supercooling, the heat storage-release property and thermal cycling stability of the composite PCM. The composite material’s micromorphology, latent heat, phase transition temperature, specific heat and thermal conductivity were measured by using scanning electron microscopy, differential scanning calorimeter and thermal conductivity meter. The experimental results showed that phase change latent heat of the composite PCM was 151.6 J/g by adding 10% mass fraction of EG and 2% mass fraction of SrCl2·6H2O into CaCl2·6H2O, thermal conductivity increased to 3.328 W/(m·K), and the degree of supercooling kept within 2 °C. The thermal conductivity and supercooling of the PCM were significantly improved.



Key wordsCaCl2·6H2O      expanded graphite (EG)      phase change material (PCM)      supercooling      thermal conductivity     
Received: 28 May 2018      Published: 25 June 2019
CLC:  TK 02  
Corresponding Authors: Jiang-hong WU     E-mail: 986347431@qq.com;pmjhwu@scut.edu.cn
Cite this article:

Xuan LIU,Jiang-hong WU,Ting XIAN,Ye FENG. Preparation and properties of CaCl2?6H2O/ expanded graphite composite phase change materials. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1291-1297.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.007     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1291


CaCl2·6H2O/EG复合相变材料的制备与性能研究

为了改善六水氯化钙的蓄放热性能,以六水氯化钙为相变材料(PCM)、膨胀石墨(EG)为载体、六水氯化锶为成核剂,采用物理吸附法制备六水氯化钙/膨胀石墨复合相变材料,研究复合相变材料的热物理特性. 采用步冷曲线法,研究复合相变材料的过冷度、蓄/放热性能和热循环稳定性;采用扫描电镜、差示扫描量热法、热流计导热仪,对复合相变材料的显微形貌、相变潜热、相变温度、比热容和导热系数进行测定. 结果表明:在六水氯化钙中添加质量分数为10%的膨胀石墨和质量分数为2%的六水氯化锶,复合相变材料的相变潜热为151.6 J/g,导热系数提升至3.328 W/(m·K),过冷度保持在2 °C以内. 相变材料的导热系数及过冷度得到显著改善.


关键词: 六水氯化钙,  膨胀石墨(EG),  相变材料(PCM),  过冷,  导热系数 
Fig.1 Schematic diagram of experimental system
Fig.2 Photos of expanded graphite adsorption capacity
Fig.3 SEM photographs of EG and composite PCM (x500)
Fig.4 Cooling curve of pure CaCl2•6H2O
Fig.5 Cooling curve of EG-CaCl2·6H2O-SrCl2·6H2O system
Fig.6 DSC curve of CaCl2•6H2O and CaCl2·6H2O/EG composite PCM
Fig.7 Specific heat capacity curve of CaCl2·6H2O/EG composite PCM
Fig.8 Temperature dependent thermal conductivities of CaCl2·6H2O/EG composite PCM
Fig.9 Temperature dependent thermal diffusivities of CaCl2·6H2O/EG composite PCM
Fig.10 Heat storage-release process curves of PCMs
Fig.11 Thermal stability curves of composite PCM
n θn/°C θm/°C θc/°C
1 26.6 27.4 0.8
20 25.9 27.1 1.2
40 25.5 27.5 2.0
60 26.7 27.2 0.5
80 25.6 27.3 1.7
100 26.5 27.2 0.7
Tab.1 Cooling phase change characteristics of CaCl2·6H2O/EG composite PCM for 100 cycles
[1]   SHARIF M K A, Al-ABIDI A A, MAT S, et al Review of the application of phase change material for heating and domestic hot water systems[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 557- 568
doi: 10.1016/j.rser.2014.09.034
[2]   CUNHA J P D, EAMES P Thermal energy storage for low and medium temperature applications using phase change materials: a review[J]. Applied Energy, 2016, 177: 227- 238
doi: 10.1016/j.apenergy.2016.05.097
[3]   MOHAMED S A, Al-SULAIMAN F A, IBRAHIM N I, et al A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072- 1089
doi: 10.1016/j.rser.2016.12.012
[4]   KOCA A, OZTOP H F, KOYUM T, et al Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector[J]. Renewable Energy, 2008, 33 (4): 567- 574
doi: 10.1016/j.renene.2007.03.012
[5]   VAROL Y, KOCA A, OZTOP H F, et al Forecasting of thermal energy storage performance of phase change material in a solar collector using soft computing techniques[J]. Expert Systems with Applications, 2010, 37 (4): 2724- 2732
doi: 10.1016/j.eswa.2009.08.007
[6]   韩宗伟, 王一茹, 阿不来提·依米提, 等 太阳能热泵相变蓄热供暖系统参数影响研究[J]. 太阳能学报, 2015, 36 (8): 2028- 2035
HAN Zong-wei, WANG Yi-ru, ABLAT-Yimit, et al Parameter study of solar assisted heat pump heating system with phase change thermal storage[J]. Acta Energiae Solaris Sinica, 2015, 36 (8): 2028- 2035
doi: 10.3969/j.issn.0254-0096.2015.08.038
[7]   QU S, MA F, JI R, et al System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage[J]. Energy and Buildings, 2015, 105: 294- 301
doi: 10.1016/j.enbuild.2015.07.040
[8]   ZHOU G, PANG M Experimental investigations on thermal performance of phase change material: Trombe wall system enhanced by delta winglet vortex generators[J]. Energy, 2015, 93: 758- 769
doi: 10.1016/j.energy.2015.09.096
[9]   TYAGI V V, PANDEY A K, BUDDHI D, et al Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings[J]. Energy and Buildings, 2016, 117: 44- 52
doi: 10.1016/j.enbuild.2016.01.042
[10]   徐云龙, 刘栋 六水氯化钙相变材料过冷性质的研究[J]. 材料工程, 2006, (增1): 218- 221
XU Yun-long, LIU Dong Preliminary supercooling research on calcium chloride hexahydrate as phase change material[J]. Journal of Materials Engineering, 2006, (增1): 218- 221
[11]   刘栋, 徐云龙 成核剂对CaCl2·6H2O相变材料储热性能的影响 [J]. 太阳能学报, 2007, 28 (7): 732- 738
LIU Dong, XU Yun-long Thermoproperties research on uncleators-CaCl2·6H2O composites under distinctive systems [J]. Acta Energiae Solaris Sinica, 2007, 28 (7): 732- 738
doi: 10.3321/j.issn:0254-0096.2007.07.009
[12]   GU X, NIU J, QIN S. Antarcticite: a phase change material for thermal energy storage–experiments and simulation [C] // Proceedings of the 11th International Congress for Applied Mineralogy (ICAM). Mianyang: China Springer, 2015: 28.
[13]   LI G, ZHANG B, LI X, et al The preparation, characterization and modification of a new phase change material: CaCl2·6H2O-MgCl2·6H2O eutectic hydrate salt [J]. Solar Energy Materials and Solar Cells, 2014, 126 (1): 51- 55
[14]   SHAHBAZ K, ALNASHEF I M, LIN R J T, et al A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials[J]. Solar Energy Materials and Solar Cells, 2016, 155: 147- 154
doi: 10.1016/j.solmat.2016.06.004
[15]   SARI A, KARAIPEKLI A Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27 (8): 1271- 1277
[16]   张正国, 龙娜, 方晓明 石蜡/膨胀石墨复合相变储热材料的性能研究[J]. 功能材料, 2009, 40 (8): 1313- 1315
ZHANG Zheng-guo, LONG Na, FANG Xiao-ming Study on performance of paraffin/expanded graphite composite phase-change material[J]. Journal of Functional Materials, 2009, 40 (8): 1313- 1315
doi: 10.3321/j.issn:1001-9731.2009.08.021
[17]   ZHANG Z, ZHANG N, PENG J, et al Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Applied Energy, 2012, 91 (1): 426- 431
doi: 10.1016/j.apenergy.2011.10.014
[18]   胡小冬, 高学农, 李得伦, 等 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64 (10): 3831- 3837
HU Xiao-dong, GAO Xue-nong, LI De-lun, et al Performance of paraffin/ expanded graphite composite phase change materials[J]. CIESC Journal, 2013, 64 (10): 3831- 3837
[19]   DUAN Z J, ZHANG H Z, SUN L X, et al CaCl2·6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage [J]. Journal of Thermal Analysis and Calorimetry, 2014, 115 (1): 111- 117
doi: 10.1007/s10973-013-3311-0
[20]   YE R, LIN W, YUAN K, et al Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material [J]. Applied Energy, 2017, 193: 325- 335
doi: 10.1016/j.apenergy.2017.02.049
[21]   张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009.
[22]   熊文嘉. 冷却速度及添加物对水合盐过冷度的影响研究[D]. 兰州: 兰州理工大学, 2014.
XIONG Wen-jia. Study on the effects of cooling rate and additives on supercooling degrees of hydrated salts [D]. Lanzhou: Lanzhou University of Technology, 2014.
[23]   AGYENIM F, HEWITT N, EAMES P, et al A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14 (2): 615- 628
doi: 10.1016/j.rser.2009.10.015
[24]   WANG J, XIE H, XIN Z Thermal properties of heat storage composites containing multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008, 104 (11): 159
[25]   WANG J, XIE H, XIN Z Thermal properties of paraffin based composites containing multi-walled carbon nanotubes[J]. Thermochimica Acta, 2009, 488 (1): 39- 42
[26]   LING Z, CHEN J, XU T, et al Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model ☆[J]. Energy Conversion and Management, 2015, 102: 202- 208
doi: 10.1016/j.enconman.2014.11.040
[27]   王晓, 丁晴, 姚晓莉, 等 石蜡基碳纳米管复合相变材料的热物性研究[J]. 热科学与技术, 2013, 12 (2): 124- 130
WANG Xiao, DING Qing, YAO Xiao-Li, et al Thermophysical properties of paraffin-based composite phase change materials filled with carbon nanotubes[J]. Journal of Thermal Science and Technology, 2013, 12 (2): 124- 130
doi: 10.3969/j.issn.1671-8097.2013.02.006
[28]   李新芳, 吴淑英, 朱冬生 碳纳米管/石蜡复合相变储能材料的导热性能研究[J]. 现代化工, 2015, (5): 113- 116
LI Xin-fang, WU Shu-ying, ZHU Dong-sheng Thermal conductivity of CNTs/paraffin phase change composites[J]. Modern Chemical Industry, 2015, (5): 113- 116
[1] Hong-kun LV,Yu-hao WU,Yan-hao FENG,Ming-jun WANG,Zi-tao YU. Measurement of thermal conductivity of backfill soil for buried power cable[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1971-1977.
[2] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[3] ZHOU Er zhen, YING Ji. Thermal and electrical conductivity of carbon nanotube arrays/epoxy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1671-1676.
[4] YAO Xiao-li, YI Si-yang, FAN Li-wu, XU Xu, YU Zi-tao, GE Jian.
Effective thermal conductivity of moist aerated concrete with different porosities
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1101-1107.
[5] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 330-335.
[6] WANG Xiao,YAO Xiao-li,HOU Jian-feng,FAN Li-wu,XU Xu,YU Zi-tao,HU Ya-cai. Non-isothermal crystallization of aqueous graphene oxide suspensions[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1272-1277.
[7] XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,XU Xu,YU Zi-tao,HU Ya-cai. Numerical investigation of influence of  nanofillers on performance of energy storage-based heat sink[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1644-1649.
[8] LUO Kun, JIN Tai, FAN Jian-ren, CEN Ke-fa. Effects of mesh size on droplet evaporation[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2176-2180.
[9] SHU E-Na, XU Jian, FENG Jian-Jiang. Laboratory experimenton thermal conductivity of silty clay[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 180-183.