Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Non-isothermal crystallization of aqueous graphene oxide suspensions
WANG Xiao1,YAO Xiao-li1,HOU Jian-feng1,FAN Li-wu1,XU Xu2,YU Zi-tao1,HU Ya-cai1
1. Institute of Thermal Science and Power Systems,Zhejiang University,Hangzhou 310027,China;2. College of Metrological and Measurement Engineering,China Jiliang University,Hangzhou 310018,China
Download:   PDF(1666KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The thermal conductivity of phase change materials can be  efficiently increased by adding graphene nanoadditives to form suspensions. The presence of the graphene nanoadditives is expected to  have considerable influence on the solid-liquid phase change characteristics of the suspensions. The aqueous suspensions in the presence of graphene oxide nanosheets at dilute concentrations were characterized via the non-isothermal crystallization method on a differential scanning calorimeter. The dependence of the supercooling degree of the suspensions on the concentration (up to mass fraction of 1%) and the cooling rate was analyzed. Results show that the supercooling degree is lower than that of pure water due to the presence of the graphene oxide nanosheets and decreases gradually with increasing the mass fraction. The lowering of the supercooling degree was nearly 5 ℃ at the highest mass fraction of 1%. In addition, the supercooling degree was shown to rise slightly with increasing the cooling rate, whereas the relative variation of the supercooling degree with respect to mass fraction was unaffected. The utilization of aqueous graphene oxide suspensions as cold storage media can lower the supercooling degree,whereas the non-isothermal crystallization processes are unable to be shortened.



Published: 04 August 2014
CLC:  TK 124  
Cite this article:

WANG Xiao,YAO Xiao-li,HOU Jian-feng,FAN Li-wu,XU Xu,YU Zi-tao,HU Ya-cai. Non-isothermal crystallization of aqueous graphene oxide suspensions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1272-1277.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.07.019     OR     http://www.zjujournals.com/eng/Y2014/V48/I7/1272


氧化石墨烯水悬浮液的非等温结晶过程

采用添加石墨烯纳米材料形成悬浮液的方法可以有效地提高相变储能材料的导热系数,石墨烯纳米材料的存在将对悬浮液的固液相变行为产生可观的影响. 利用差示扫描量热仪对低质量分数的氧化石墨烯水悬浮液进行非等温结晶实验观测,对比分析不同质量分数(最高为1%)的悬浮液在不同降温速率情况下过冷度的变化规律. 实验结果表明,由于氧化石墨烯的存在,悬浮液的过冷度较纯水有所降低. 随着质量分数的提高,悬浮液的过冷度呈逐步下降的趋势,当最高质量分数为1%时,悬浮液的过冷度较纯水下降了近5 ℃. 悬浮液的过冷度随着降温速率的增大会略微升高,但降温速率对过冷度随悬浮液质量分数的相对变化没有影响. 采用氧化石墨烯水悬浮液作为蓄冷工质能够有效地降低水的过冷度,但对整个非等温结晶过程未体现出加速的效果.

1] 张仁元. 相变材料与相变储能技术[M]. 北京:科学出版社,2009.
[2] 朱冬生,李新芳,汪南,等. 纳米流体相变蓄冷材料的基本特性与应用前景[J]. 材料导报,2007,21(4):87-91.
ZHU Dong-sheng,LI Xin-fang,WANG Nan,et al. Fundamental properties and application prospect of the phase change nanofluid as a cold storage material [J]. Materials Review,2007,21(4):87-91.
[3] 刘玉东,刘夔宁,何钦波,等. 低温纳米复合相变蓄冷材料热物性研究[J]. 工程热物理学报,2008,29(1):105107.
LIU Yu-dong,LI Kui-ning,HE Qin-bo,et al. Study on thermal properties of low temperature nanocomposites for phase change cool storage [J]. Journal of Engineering Thermophysics,2008,29(1):105-107.
[4] WU Shu-ying,ZHU Dong-sheng,LI Xin-fang,et al. Thermal energy storage behavior of Al2O3-H2O nanofluids [J]. Thermochimica Acta,2009,483(1/2):73-77.
[5] 杨硕,朱冬生,吴淑英,等. Al2O3-H2O纳米流体相变蓄冷特性研究[J]. 制冷学报,2010,31(1):23-26.
YANG Shuo,ZHU Dong-sheng,WU Shu-ying,et al. Study on phase-change cold storage characteristics of Al2O3-H2O nanofluids [J]. Journal of Refrigeration,2010,31(1):23-26.
[6] BIGG E K. The supercooling of water [J]. Proceedings of the Physical Society, Section B,1953,66(8):688-694.
[7] ANGEL C Z. Supercooled water [J]. Annual review of Physical Chemistry,1983,34: 593-630.
[8] 洪荣华,孙志坚,吴杰,等. 成核添加剂减小冰蓄冷溶液过冷度的实验研究[J]. 浙江大学学报:工学版,2004,39(11):1797-1800.
HONG Rong-hua,SUN Zhi-jian,WU Jie, et al. Experimental study on reduce supercooling degree of ice storage solution using nucleation additive [J]. Journal of Zhejiang University:Engineering Science,2004,39(11):1797-1800.
[9] CHEN Ying,JIA Li-si,MO Song-ping. Experimental investigation of crystallization process of nanofluid by DSC [J]. Journal of South University:English Edition,2010,26(2):359-363.
[10] 贾莉斯,陈颖,莫松平. 二氧化钦纳米流体的固液相变特性[J]. 工程热物理学报,2011,32(11):1913-1916.
JIA Li-si,CHEN Ying,MO Song-ping. Solid-liquid phase change property of titanium dioxide nanofluid [J]. Journal of Engineering Thermophysics,2011,32(11):1913-1916.
[11] HE Qin-bo,WANG Shuang-feng,TONG Ming-wei,et al. Experimental investigation on nucleation supercooling degree of TiO2-H2O nanofluids for cool storage [J]. Energy Conversion and Management,2012,64:199-205.
[12] GONG Wei,XIAO Hong-yi,YANG Zhen,et al. Study of the subcooling phenomenon of phase change material with different nanoparticlcle additives for energys storage [C]//Proceedings of the 8th International Symposium on Heat Transfer. Beijing: [s.n.], 2012:16.
[13] KOUSKSOU T,RHAFIKI T,MAHDAOUI M,et al.Crystallization of supercooled PCMs inside emulsions: DSC applications [J]. Solar Energy Materials and Solar Cells,2012,107:28-36.
[14] WANG Ji-feng,XIE Hua-qing,XIN Zhong. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes [J]. Thermochimica Acta,2009,488(1/2):39-42.
[15] YU Zi-tao,FANG Xin,FAN Li-wu,et al. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes [J]. Carbon,2013,53:277-285.
[16] JIA Li-si,CHEN Ying,MO Song-ping. Solid liquid phase transition of nanofluids [J]. International Journal of Heat and Mass Transfer,2013,59:29-34.
[17] YU Wei, XIE Hua-qing, CHEN Wei. Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets [J]. Journal of Applied Physics,2010,107(9):094317.
[18] TESSY THERES B, SUNDARA S R. Investigation of thermal and electrical conductivity of graphene based nanofluids [J]. Journal of Applied Physics,2010,108(12):124308.
[19] SOUJIT S G,SIVA V M,SREEPRASAD T S,et al. Thermal conductivity enhancement of nanofluids containing graphene nanosheets [J]. Journal of Applied Physics,2011,110(8):084302.
[20] 刘东方. 潜热型水基氧化石墨烯纳米流体的制备及其过冷特性研究[D]. 重庆:重庆大学,2012:18-67.
LIU Dong-fang. Study of preparation and supercooling characteristics of graphene oxide nanofluids as phrase change material [D]. Chongqing:Chongqing University,2012:1867.
[21] 杨梅,赵长颖. 添加纳米颗粒的石蜡非等温凝固过程研究[J]. 热科学与技术,2013,12(1):47-51.
YANG Mei,ZHAO Chang-ying. Investigation on non-isothermal solidification of paraffin with nano-particle additives [J]. Journal of Thermal Science and Technology,2013,12(1):47-51.

[1] LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2113-2119.
[2] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2087-2093.
[3] ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1859-1864.
[4] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[5] FENG Zhao zan, LI Jun ye, LI Wei. Heat transfer characteristics of subcooled flow boiling in one sided heating mini gap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 671-682.
[6] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 681-690.
[7] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 477-484.
[8] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.
[9] LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 306-311.
[10] DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you. Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1478-1486.
[11] ZHANG Jing-zhi, LI Wei. Numerical simulation of gas-liquid Taylor flow in mini/micro tubes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1572-1576.
[12] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1242-1248.
[13] HUANG Lian-feng,TIAN Fu-you,LI Qing,FAN Li-wu,YU Zi-tao,WU Hai-yun. Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 916-923.
[14] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai1. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 1-2.
[15] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 330-335.