Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Effective thermal conductivity of moist aerated concrete with different porosities
YAO Xiao-li1, YI Si-yang1, FAN Li-wu1, XU Xu2, YU Zi-tao1, GE Jian3
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China;2. College of Metrological and Measurement Engineering, China Jiliang University, Hangzhou 310018, China;3. Institute of Construction Technology, Zhejiang University, Hangzhou 310058, China
Download:   PDF(1434KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effective thermal conductivity of autoclaved aerated concrete with different porosities was measured using Hot Disk thermal constants analyzer, which is based on the transient plant source technique to investigate, the thermal insulation performance of autoclaved aerated concrete. Data analysis results show that this instrument has good repeatability and is suitable for the thermal conductivity testing of moist building materials. Results also indicated that the effective thermal conductivity of moist aerated concrete increases monotonously with moisture content rising, and an inflection point appears when the moisture fraction is 15%. When the moisture fraction equal 25%, the thermal conductivity of moist samples is nearly twice that of dry samples. When the moisture fraction is as high as 100%, the thermal conductivity is 4 times as that of dry samples. The thermal conductivity of aerated concrete decreased with porosity increasing under the same moisture content. The predictor formulas for the effective thermal conductivity of aerated concrete about porosity and moisture fraction was proposed.



Published: 01 June 2015
CLC:  TU 528  
Cite this article:

YAO Xiao-li, YI Si-yang, FAN Li-wu, XU Xu, YU Zi-tao, GE Jian.

Effective thermal conductivity of moist aerated concrete with different porosities
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1101-1107.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.06.014     OR     http://www.zjujournals.com/eng/Y2015/V49/I6/1101


不同孔隙率下含湿加气混凝土的有效导热系数

为研究含湿蒸压加气混凝土的保温性能,采用基于瞬态平面热源法的Hot Disk热常数分析仪测量不同孔隙率下含湿蒸压加气混凝土的有效导热系数.分析结果表明:Hot Disk热常数分析仪的测量结果具有较好的重复性,适用于含湿建筑材料导热性能的测试. 含湿加气混凝土的有效导热系数随含水率的提高呈现单调增长的趋势,其增长曲线在质量含水率为15%时出现明显的拐点. 当质量含水率约为25%时,含湿加气有效导热系数较干燥试样增大了近一倍;而当质量含水率高达100%时,混凝土的有效导热系数约为干燥试样的4倍. 在相同含水率下,加气混凝土的有效导热系数随孔隙率的增大而逐渐降低. 根据测量数据,总结得到加气混凝土有效导热系数关于孔隙率和质量含水率的预测公式.

[1] ROPELEWSKI L, NEUFELD R D. Thermal inertia properties of autoclaved aerated concrete [J]. Journal of Energy Engineering, 1999, 125(2): 59-75.
[2] BOUGUERRA A. Prediction of effective thermal conductivity of moist wood concrete [J]. Journal of Physics D: Applied Physics, 1999, 32(12): 1407.
[3] BHATTACHARJEE B, ASCE M, KRISHNAMOORTHY S. Permeable porosity and thermal conductivity of construction materials [J]. Journal of Materials in Civil Engineering, 2004, 16(4): 322-330.
[4] DOS SANTOS W N. Effect of moisture and porosity on the thermal properties of a conventional refractory concrete [J]. Journal of the European Ceramic Society, 2003, 23(5): 745-755.
[5] YU Z T, XU X, FAN L W, et al. Experimental measurements of thermal conductivity of wood species in China: effects of density, temperature, and moisture content [J]. Forest Products Journal, 2011, 61(2): 130-135.
[6] SHAKUN W. The causes and control of mold and mildew in hot and humid climates [J]. ASHRAE Transactions, 1992, 98(1): 1282-1292.

 

 


[7] CAMPBELL-ALLEN D, THORNE C P. The thermal conductivity of concrete [J]. Magazine of Concrete Research, 1963, 15(43): 39-48.

[8] KHAN M I. Factors affecting the thermal properties of concrete and applicability of its prediction models [J]. Building and Environment, 2002, 37(6): 607-614.

[9] MAHONKOV E, JIIKOV M, PAVLK Z, et al. Effect of moisture on the thermal conductivity of a cementitious composite [J]. International Journal of Thermophysics, 2006, 27(4): 1228-1240.
[10] KIM K H, JEON S E, KIM J K, et al. An experimental study on thermal conductivity of concrete [J]. Cement and Concrete Research, 2003, 33(3): 363-371.
[11] CLARKE J A, YANESKE P P. A rational approach to the harmonisation of the thermal properties of building materials [J]. Building and Environment, 2009, 44(10): 2046-2055.
[12] STUCKES A D, SIMPSON A. The effect of moisture on the thermal conductivity of aerated concrete [J]. Building Services Engineering Research and Technology, 1985, 6(2): 49-53.
[13] 胡亚才,范利武,黄君丽,等.瞬态法测量木材热物性的理论与实验研究[J].浙江大学学报:工学版,2006, 39(11): 1793-1796.
HU Ya-cai, FAN Li-wu, HUANG Jun-li, et al. Theoretical and experimental study on transient measurement of wood thermal properties [J]. Journal of Zhejiang University: Engineering Science, 2006, 39(11): 1793-1796.
[14] ASTM C642, Standard test method for density, absorption, and voids in hardened concrete [S]. Philadelphia: ASTM, 2001.
[15] BOUGUERRA A, LAURENT J P, GOUAL M S, et al. The measurement of the thermal conductivity of solid aggregates using the transient plane source technique [J]. Journal of Physics D: Applied Physics, 1997, 30(20): 2900-2904.
[16] ISO 15901-1:  2005, Pore-size distribution and porosimetry of solid materials by mercury porosimetry and gas adsorption-Part 1: Mercury porosimetry [S]. ISO International Organization for Standardization, 2005.
 
[17] KORONTHALYOVA O, MATIASOVSKY P. Thermal conductivity of fiber reinforced porous calcium silicate hydrate-based composites [J]. Journal of Thermal Envelope and Building Science, 2003, 27(1): 71-89.
[18] RUDTSCH S. Thermal conductivity measurements for the separation of heat and mass diffusion in moist porous materials [J]. High Temperatures-High Pressures, 2000, 32(4): 487-492.
[19] 于明志,隋晓凤,彭晓峰.堆积型含湿多孔介质有效导热系数测试实验研究[J].山东建筑大学学报,2009, 23(5): 385-388.
YU Ming-zhi, SUI Xiao-feng, PENG Xiao-feng. Experimental study on thermal conductivity measurement of wet unconsolidated porous media [J]. Journal of Shandong Jianzhu University, 2009, 23(5): 385-388.
[20] 王贞尧,吴晓,王圣妹,等.含有结构水的多孔材料有效导热系数研究及预测[J].无机材料学报,1987, 2(2): 183-188.
WANG Zhen-nao, WU Xiao, WANG Sheng-mei, et al. Study and prediction of thermal conductivity of porous materials with structural water [J]. Journal of Inorganic Materials, 1987, 2(2): 183-188.
[21] 胡亚才,范利武,俞自涛,等.木材微结构对其传热特性影响的实验研究[J].工程热物理学报, 2005, 26: 210-212.
 
HU Ya-cai, FAN Li-wu, YU Zi-tao, et al. Experimental research on the effect of microstructures on the heat transfer properties of wood [J]. Journal of Engineering Thermophysics, 2005, 26: 210-212.
[1] OU Zu-min, SUN Lu. Flexural fatigue-life reliability of frost-damaged concrete[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1074-1081.
[2] LI Jing, WANG Zhe. Deformation properties of concrete under quasi plane stress sate[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 745-751.
[3] WEN Xiao-dong, CAI Yu-liang, ZHAO Li, FENG Lei. Sulfate resistance of concrete by machine-made tuff sand at low temperature[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 532-537.
[4] XIONG Hai Bei, CAO Ji Xing, ZHANG Feng Liang. Displacement monitoring method for frame tube structure with strengthened stories[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1752-1760.
[5] WU Meng, JI Yong sheng, CHEN Xiao feng, ZHANG Ling lei. Effects of superfine fly ash on thaumasite form of sulfate attack[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1479-1485.
[6] XIONG Hai bei, LI Ben ben, JIANG Jia fei. Applicability of stress strain model for FRP confined concrete cylinders[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2363-2375.
[7] DUAN An, ZHANG Da wei, ALNAGGAR Mohammed. Microplane modeling of ASR effects on concrete structures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1939-1945.
[8] DU Ming-yue, TIAN Ye, JIN Nan-guo, WANG Yu-wei, JIN Xian-yu. Coupling of hygro-thermal field in early-age concrete based on cement hydration[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1410-1416.
[9] TONG jing, JIN Xian yu, TIAN Ye, JIN Nan guo. Study on surface cracking of corroded reinforced concrete based on DIC method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 193-199.
[10] CHEN Jun, JIN Nan-guo, JIN Xian-yu, HONG Tian-cong. Permeability evolution of concrete by electrical resistivity measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 575-580.
[11] YU Ke-quan, LU Zhou-dao, TANG An-jing. Residual crack extension resistance during complete fracture
process of post-fire concrete
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 588-594.
[12] WANG Xue-song, JIN Xian-yu, TIAN Ye, LI Bei, JIN Nan-guo. Applicability of accelerated corrosion method of steel bars in cracked concrete structure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 565-574.
[13] XIE Zhong-kai, LIU Guo-hua. Application of approximate entropy in concrete structures damage identification[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(3): 456-464.
[14] WANG Xue-song, JIN Xian-yu, TIAN Ye, JIN Nan-guo. Bond properties based on non-uniform corrosion deformed bar[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 154-161.
[15] XIE Zhong-kai, LIU Guo-hua, WU Zhi-gen. Dynamic damage identification for beam structures
based on transfer entropy
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(10): 1880-1886.