Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil and Traffic Engineering     
Sulfate resistance of concrete by machine-made tuff sand at low temperature
WEN Xiao-dong, CAI Yu-liang, ZHAO Li, FENG Lei
Ningbo University of Technology, Ningbo 315016, China
Download:   PDF(1749KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
The service environment was simulated using a mixed solution of sodium sulfate and magnesium sulfate at the temperature of 10±1 ℃
combining with corrosive medium and low temperature characteristics in order to study anti-sulfate erosion properties of concrete by machine-made tuff sand at low temperature. Meanwhile, electrical pulses were used to accelerate corrosive medium migration. After that, on the variation of strength and corrosion products of the specimens was compatatively analyzed before and after suffered corrosion. Results show that the sulfate erosion behavior of machine-made tuff sand is more serious than that of river sand at low temperature. In a certain range, the anti-sulfate erosion ability of the specimens improves with the increasing dosage of the barium hydroxide. However, if the dosage of barium hydroxide is more than 4%, the addition of barium hydroxide will reduce the improvement effect. After a period of sulfate attack at low temperature, the erosion product of the specimens made from machine-made sand is mainly composed of thaumasite, while that of river sand is mainly composed of Ettringite.Furthermore, the reason that why the machine-made tuff sand can reduce the sulfate resistance ability of concrete at low temperature was discussed from the mineral composition of tuff rock powder and porous structure of machine-made sand concrete. This study could provide a certain reference for the durability design of concrete by machine-made sand suffering sulfate ambient.


Published: 01 March 2017
CLC:  TU 528  
Cite this article:

WEN Xiao-dong, CAI Yu-liang, ZHAO Li, FENG Lei. Sulfate resistance of concrete by machine-made tuff sand at low temperature. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 532-537.


凝灰岩机制砂混凝土抗低温硫酸盐侵蚀性

为了研究低温环境下凝灰岩机制砂对混凝土抗硫酸盐侵蚀性的影响, 结合腐蚀介质及低温环境特点,采用10±1 ℃的硫酸钠/硫酸镁复合溶液模拟服役环境;利用电脉冲加速腐蚀介质迁移,对比分析腐蚀前、后试样的强度变化、腐蚀产物的物相等.结果表明:凝灰岩机制砂拌制试件比河砂拌制试件更容易受到低温硫酸盐侵蚀破坏;一定掺量的氢氧化钡可改善试件的抗硫酸盐侵蚀能力,但当掺量高于4%时,改善作用开始降低;低温硫酸盐侵蚀后机制砂拌制试件的腐蚀物以碳硫硅酸钙为主,河砂拌制试件的腐蚀物以钙矾石为主.从凝灰岩石粉的物相及机制砂混凝土孔结构探讨抗低温硫酸盐侵蚀能力弱化原因.该研究可以为硫酸盐区划环境下机制砂混凝土的耐久性设计提供一定参考.

[1] 袁勇,刘涛,柳献.运营越江隧道服役现状调查与检测评估[J].东南大学报:自然科学版,2006,36(增2): 83-89.
YUAN Yong, LIU Tao, LIU Xian. Investigation and evaluation of present state and serviceability of existing river-crossing tunnel [J]. Journal of Southeast University: Natural Science Edition, 2006, 36(Suppl. 2): 83-89.
[2] WEN X D, MA B G, GAN W Z, et al. Design and research on gradient structure concrete based on volumetric stabilization [J]. ACI Materials Journal , 2010,107(06): 611-616.
[3] 洪乃丰.水环境腐蚀与混凝土的耐久性[J],腐蚀与防护,2006,27(4): 119-124.
HONG Nai-feng. Corrosion in water environments and durability of concrete [J], Corrosion and Protection, 2006, 27(4): 119-124.
[4] 金伟良,赵羽习.混凝土结构耐久性[M]. 北京:科学出版社, 2002: 111-113.
[5] 卢都友,吕忆农.加强基础研究确保机制砂石混凝土耐久性[J].混凝土世界,2011,22(4): 68-72.
LU Du-you, LV Yi-nong. Strengthen basic research to ensure the durability of machine-made sand and gravel concrete [J]. China Concrete, 2011, 22(4): 68-72.
[6] 马孝轩.我国主要类型土壤对混凝土材料腐蚀性规律的研究[J].建筑科学,2003,19(6): 56-57.
MA Xiao-xuan. The classification of main soil corrosion to concrete materials in our country [J]. Building Science, 2003,19(6): 56-57.
[7] 蒋正武,潘峰,吴建林,等.机制砂参数对混凝土性能的影响研究[J].混凝土世界,2011,26(8): 66-70.
JIANG Zheng-wu, PAN Feng, WU Jian-lin, et al. Effects of manufactured sand parameters on concret [J]. China Concrete, 2011, 26(8): 66-70.
[8] 胡晓曼,董献国.机制砂砂浆开裂敏感性评价指标探讨[J].混凝土与水泥制品,2015(2): 25-28.
HU Xiao-man, DONG Xian-guo. Index on the cracking sensitivity for manufactured-sand mortar [J].China Concrete and Cement Products, 2015(2): 25-28.
[9] 郑怡,张耀庭.石灰岩质机制砂混凝土收缩徐变性能的试验研究[J].土木工程学报,2013,46(12): 59-65.
ZHENG Yi, ZHANG Yao-ting. Experimental study on shrinkage and creep behavior of crushed limestone sand concrete [J]. China Civil Engineering Journal, 2013, 46(12): 59-65.
[10] 王雨利,王稷良,周明凯,等.机制砂及石粉含量对混凝土抗冻性能的影响[J]. 建筑材料学报,2008,11(6): 726-731.
WANG Yu-li, WANG Ji-liang, ZHOU Ming-kai, et al. Effects of manufactured fine aggregate and aggregate micro fine on frost-resistant performance of concrete [J]. Journal of Building Materials,2008,11(6): 726-731.
[11] 黄谦,王冲,杨长辉,等.电脉冲作用下水泥基材料硫酸盐侵蚀的影响因素[J].东南大学学报:自然科学版,2014,44(5): 1041-1045.
HUANG Qian, WANG Chong, YANG Chang-hui, et al. Influence factors of sulfate attack on cement-based materials subjected to electrical pulse [J]. Journal of Southeast University: Natural Science Edition,2014,44(5): 1041-1045.
[12] LIU Z Q, DENG D H, SCHUTTE G, et al. Chemical sulfate attack performance of partially exposed cement and cement + fly ash paste [J].Construction Building Materials, 2012, 28(1): 230-237.
[13] 王冲,刘焕芹,罗遥凌,等.电脉冲作用下混凝土抗硫酸盐侵蚀加速试验方法[J].同济大学学报,2013,41(12): 1865-1871.
WANG Chong, LIU Huan-qin, LUO Yao-ling, et al. Accelerated test method of sulfate attack resistance of concrete based on electrical pulse [J]. Journal of Tongji University, 2013, 41(12): 1865-1871.
[14] 木士春.凝灰岩的物理化学性质及其开发利用[J].中国矿业,2000,9(3): 17-20.
Mu Shi-chun. Physical and chemical features of tuff and its development and application [J]. China Mining Magazine, 2000,9(3): 17-20.
[15] 沈凡,胡晨光,赵明宇. 变温下Ba2+对水泥浆体C-S-H 微结构的影响[J]. 桂林理工大学学报,2014,34(4): 759-764.
SHEN Fan, HU Chen-guang, ZHAO Ming-yu. Effect of Ba2+ on microstructure of C-S-H in portland cement pastes at variable temperature regime [J]. Journal of Guilin University of Technology, 2014, 34(4): 759-764.
[16]高礼雄,荣辉,刘金革.钡盐对混凝土抗硫酸盐侵蚀的有效性研究[J].混凝土,2007(3): 17-18.
GAO Li-xiong, RONG Hui, LIU Jin-ge. Effective investigations of barium salts on suppressing the sulfate attack dam age for concrete [J]. Concrete, 2007(3): 17-18.
[17] SADANANDA S, DAVID L E, MATTHEW P N. Identification of thaumasite in concrete by Raman chemical imaging [J]. Cement and Concrete Composites, 2002,24(3): 347-350.
[18] 高小建,马保国.水泥基材料抗TSA侵蚀性能影响因素研究[J].工业建筑,2006,36(12): 1-4.
GAO Xiao-jian, MA Bao-guo. Factors affecting thaumasite form of sulfate attack on cement-based materials [J]. Industrial Construction, 2006, 36(12): 1-4.
[19]马保国,高小建,罗忠涛.矿物掺合料对水泥砂浆TSA侵蚀的影响[J].材料科学与工程学报,2006,24(2): 230-234.
MA Bao-guo, GAO Xiao-jian, LUO Zhong-tao. Effects of mineral admixtures on thaumasite form of sulfate attack of cement mortars [J]. Journal of Materials Science and Engineering, 2006, 24(2): 230-234.
[20] 冯奇,刘光明,巴恒静.颗粒级配对水泥基材料有害孔隙率的影响[J].同济大学学报:自然科学版,2004,32(9): 1168-1172.
FENG Qi, LIU Guang-ming, BA Heng-jing. Relation of grain grading and deleterious porosity of cement-based materials [J]. Journal of Tongji University: Natural Science Edition, 2004,32(9): 1168-1172.
[21] 巴恒静,邓洪卫,高小建.高性能混凝土微裂缝与显微结构的研究[J].混凝土,2000(1): 14-17.
BA Heng-jing, DENG Hong-wei, GAO Xiao-jian. Study on microcrack and micro construction high performance concrete [J].Concrete, 2000(1): 14-17.
[1] Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2021, 55(5): 999-1009.
[2] Xiao-hu WANG,Ni-du JIKE,Shan CHEN,Yu-xuan QI,Yu PENG,Qiang ZENG. Water imbibition in concrete in-situ traced by transmission X-ray radiography[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2021, 55(4): 727-732.
[3] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2021, 55(1): 1-9.
[4] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2021, 55(1): 10-19.
[5] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(10): 2047-2057.
[6] Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2020, 54(5): 851-857.
[7] Xiao-tian LI,Chu-xin WANG,Yong-qiang YU. Rheological distribution algorithm of cement paste based on particle-flow-interaction theory[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(12): 2264-2270.
[8] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(12): 2298-2308.
[9] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(12): 2309-2316.
[10] OU Zu-min, SUN Lu. Flexural fatigue-life reliability of frost-damaged concrete[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1074-1081.
[11] LI Jing, WANG Zhe. Deformation properties of concrete under quasi plane stress sate[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 745-751.
[12] XIONG Hai Bei, CAO Ji Xing, ZHANG Feng Liang. Displacement monitoring method for frame tube structure with strengthened stories[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1752-1760.
[13] WU Meng, JI Yong sheng, CHEN Xiao feng, ZHANG Ling lei. Effects of superfine fly ash on thaumasite form of sulfate attack[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1479-1485.
[14] XIONG Hai bei, LI Ben ben, JIANG Jia fei. Applicability of stress strain model for FRP confined concrete cylinders[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2363-2375.
[15] DUAN An, ZHANG Da wei, ALNAGGAR Mohammed. Microplane modeling of ASR effects on concrete structures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1939-1945.