The ultra high toughness cementitious composite (UHTCC) specimens were loaded with Hopkinson bar, and the stress wave signals in UHTCC under impact pressure of 0.2, 0.3, 0.4, 0.5 MPa were measured, in order to study the propagation characteristics of stress waves in UHTCC. The consistency of the loading waveforms under the same loading conditions was verified by comparing the incident bar waveforms. The stress wave speeds in UHTCC under different impact pressures were calculated by two methods, i.e. two point method and peak value method. Results show that the two point method is more applicable and the calculation results are relatively stable. However, the peak value method requires similar wave impedance of the incident bar and the specimen. Calculation results show that the stress wave speed and attenuation coefficient in UHTCC do not change significantly with the impact pressure, and the average wave speed is 3.060 km/s, as well as the average attenuation coefficient is 2.775 m?1. The wave speed and attenuation of stress waves in material can be expressed by parameters of Zhu-Wang-Tang constitutive model. Correspondingly, the measured wave speed and attenuation coefficient can represent the Zhu-Wang-Tang impact constitutive model of UHTCC as an equation with a single quasi-static parameter. An experimental method to determine the dynamic constitutive of UHTCC directly is provided.
Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.
Fig.1Experimental device of stress wave propagation in UHTCC
Fig.2Comparison of measured waveforms on incident bar
Fig.3Waveforms under different impact pressures
I/MPa
?L/mm
?t/μs
C/(km·s?1)
C0/(km·s?1)
0.18
300
97.8
3.067
3.074
0.20
300
102.4
2.930
0.25
300
93.0
3.226
0.30
300
102.6
2.924
3.037
0.30
300
94.8
3.165
0.30
300
102.4
2.930
0.30
300
105.6
2.841
0.33
300
90.2
3.326
0.40
300
102.2
2.935
3.076
0.40
300
86.6
3.464
0.40
300
104.4
2.874
0.40
300
99.0
3.030
0.45
300
96.4
3.112
3.062
0.50
300
97.2
3.086
0.50
225
66.2
3.399
0.50
300
105.2
2.852
0.50
300
104.8
2.863
Tab.2Wave velocity calculation table calculated by two point method
I/MPa
UI/V
UR/V
C2/(km·s?1)
0.18
0.637 60
?0.574 7
1.263 8
0.18
0.127 30
?0.121 8
0.538 0
0.25
0.216 10
?0.191 8
1.449 5
0.30
2.538 40
?2.292 2
1.240 9
0.45
3.296 96
?2.782 0
2.063 1
Tab.3Wave velocity calculation results obtained by peak value method
Fig.4Typical waveform at a point on incident bar
Fig.5Zhu-Wang-Tang constitutive physical model
[1]
王礼立. 应力波基础[M]. 北京: 国防工业出版社, 1985.
[2]
王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科技大学出版社, 2017.
[3]
BACON C An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar[J]. Experimental Mechanics, 1998, 38 (4): 242- 249
doi: 10.1007/BF02410385
[4]
SIVIOUR C R A measurement of wave propagation in the split Hopkinson pressure bar[J]. Measurement Science and Technology, 2009, 20 (6): 1- 5
[5]
JU Y, YANG Y M, MAO Y Z, et al Laboratory investigation on mechanisms of stress wave propagations in porous media[J]. Science in China: Series E: Technological Sciences, 2009, 52 (5): 1374- 1389
doi: 10.1007/s11431-009-0128-y
[6]
胡时胜, 张磊, 武海军, 等 混凝土材料层裂强度的实验研究[J]. 工程力学, 2004, 21 (4): 128- 132 HU Shi-sheng, ZHANG Lei, WU Hai-jun, et al Experimental study on spalling strength of concrete[J]. Engineering Mechanics, 2004, 21 (4): 128- 132
doi: 10.3969/j.issn.1000-4750.2004.04.023
[7]
赖建中, 孙伟 活性粉末混凝土的层裂性能研究[J]. 工程力学, 2009, 26 (1): 137- 141 LAI Jian-zhong, SUN Wei The spalling behaviour of reactive powder concrete[J]. Engineering Mechanics, 2009, 26 (1): 137- 141
[8]
KLEPACZKO J R, BRARA A An experimental method for dynamic tensile testing of concrete by spalling[J]. International Journal of Impact Engineering, 2001, 25 (4): 387- 409
doi: 10.1016/S0734-743X(00)00050-6
[9]
王礼立, PLUVINAGE G, LABIBES K 冲击载荷下高聚物动态本构关系对黏弹性波传播特性的影响[J]. 宁波大学学报:理工版, 1995, 8 (3): 30- 57 WANG Li-li, PLUVINAGE G, LABIBES K The influence of dynamic constitutive relations of polymers at impact loading on the viscoelastic wave propagation character[J]. Journal of Ningbo University: Natural Science and Engineering Edition, 1995, 8 (3): 30- 57
[10]
FAN L F, WONG L N Y, MA G W Experimental investigation and modeling of viscoelastic behavior of concrete[J]. Construction and Building Materials, 2013, 48: 814- 821
doi: 10.1016/j.conbuildmat.2013.07.010
[11]
GEORGIN J F, REYNOUARD J M Modeling of structures subjected to impact: concrete behaviour under high strain rate[J]. Cement and Concrete Composites, 2003, 25 (1): 131- 143
doi: 10.1016/S0958-9465(01)00060-9
[12]
WANG L L, ZHOU F H, SUN Z J, et al Studies on rate-dependent macro-damage evolution of materials at high strain rates[J]. International Journal of Damage Mechanics, 2010, 19 (7): 805- 820
doi: 10.1177/1056789509359654
[13]
ZHANG H, WANG B, XIE A Y, et al Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154- 167
doi: 10.1016/j.conbuildmat.2017.06.177
[14]
胡时胜, 王道荣 冲击载荷下混凝土材料的动态本构关系[J]. 爆炸与冲击, 2002, 22 (3): 242- 246 HU Shi-sheng, WANG Dao-rong Dynamic constitutive relation of concrete under impact[J]. Explosion and Shock Waves, 2002, 22 (3): 242- 246
doi: 10.3321/j.issn:1001-1455.2002.03.009
[15]
LAI J Z, SUN W Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite[J]. Cement and Concrete Research, 2009, 39 (11): 1044- 1051
doi: 10.1016/j.cemconres.2009.07.012
[16]
ZHANG H, WANG L, ZHENG K, et al Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete[J]. Construction and Building Materials, 2018, 187: 584- 595
doi: 10.1016/j.conbuildmat.2018.07.164
[17]
XU S L, CAI X R Experimental study and theoretical models on compressive properties of ultrahigh toughness cementitious composites[J]. Journal of Materials in Civil Engineering, 2010, 22 (10): 1067- 1077
doi: 10.1061/(ASCE)MT.1943-5533.0000109
[18]
徐世烺, 李贺东 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41 (6): 45- 60 XU Shi-lang, LI He-dong A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41 (6): 45- 60
doi: 10.3321/j.issn:1000-131X.2008.06.008
[19]
LI V C, WANG S X, WU C Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98 (6): 483- 492
[20]
CUROSU I, MECHTCHERINE V, FORNI D, et al Performance of various strain-hardening cement-based composites (SHCC) subject to uniaxial impact tensile loading[J]. Cement and Concrete Research, 2017, 102: 16- 28
doi: 10.1016/j.cemconres.2017.08.008
[21]
KANG S, KIM J The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cement and Concrete Research, 2011, 41 (10): 1001- 1014
doi: 10.1016/j.cemconres.2011.05.009
[22]
LI V C, WU C, WANG S X, et al Interface tailoring for strain-hardening polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2002, 99 (5): 463- 472
WILLE K, EL-TAWIL S, NAAMAN A E Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53- 66
doi: 10.1016/j.cemconcomp.2013.12.015
[25]
YU K Q, LI L Z, YU J T, et al Direct tensile properties of engineered cementitious composites: a review[J]. Construction and Building Materials, 2018, 165: 346- 362
doi: 10.1016/j.conbuildmat.2017.12.124
[26]
高翔. 纳米SiO2改性超高韧性水泥基复合材料试验研究[D]. 杭州: 浙江大学, 2016. GAO Xiang. Experimental study on ultra high toughness cementitious composites with nano-SiO2 [D]. Hangzhou: Zhejiang University, 2016.
[27]
刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连: 大连理工大学, 2012. LIU Wen. Experimental study on dynamic mechanical properties of ultra-high toughness cementitious composites [D]. Dalian: Dalian University of Technology, 2012.
[28]
LI Q H, ZHAO X, XU S L, et al Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials, 2016, 125: 490- 500
doi: 10.1016/j.conbuildmat.2016.08.066
[29]
王礼立, 王永刚 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25 (1): 17- 25 WANG Li-li, WANG Yong-gang The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005, 25 (1): 17- 25
doi: 10.3321/j.issn:1001-1455.2005.01.004