Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2309-2316    DOI: 10.3785/j.issn.1008-973X.2019.12.007
Civil Engineering, Hydraulic Engineering     
Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete
Peng-hui WANG1(),Hong-xia QIAO1,2,*(),Qiong FENG1,Hui CAO1
1. Key laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
2. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810083, China
Download: HTML     PDF(2088KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The manufacturing error of coated steel bars in magnesium oxychloride coated reinforced concrete (MOCRC) leads to some differences in the life prediction of coated steel bars in different MOCRCs. The solution immersion accelerated corrosion test with full consideration of individual differences was proposed, and the life prediction of coated steel bars was based on Wiener degeneration process. Judge whether the corrosion current density of the coated steel bar complied with the Wiener degradation process. The drift coefficient was introduced for modeling under the individual differences of the coated steel bars. Coated steel bars' life predictions between considering individual differences and no individual differences were compared. Results show that the degradation model of coated steel bar under accelerated corrosion test in fixed concentration solution obeys one number term of exponential function. Under the Wiener degradation process, the coated steel bars with individual differences are severely corroded around 25 000 d, while the coated steel bars without individual differences are severely corroded around 30 000 d.



Key wordscoated steel bar      individual differences      durability degradation      acceleration corrosion test      Wiener function     
Received: 16 November 2018      Published: 17 December 2019
CLC:  TU 528  
Corresponding Authors: Hong-xia QIAO     E-mail: 356984639@qq.com;qiaohongxia@lut.edu.cn
Cite this article:

Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2309-2316.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.007     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2309


考虑个体差异的氯氧镁水泥混凝土涂层钢筋寿命预测

氯氧镁涂层钢筋混凝土(MOCRC)中涂层钢筋的制作误差导致不同MOCRC中涂层钢筋的寿命预测存在一定的差异,提出充分考虑个体差异性的溶液浸泡加速腐蚀试验,基于Wiener退化过程对涂层钢筋进行寿命预测. 判断涂层钢筋腐蚀电流密度是否符合Wiener退化过程;在考虑涂层钢筋个体差异性的前提下引入漂移系数进行建模;将考虑个体差异与未考虑个体差异的涂层钢筋寿命预测对比分析. 结果表明:溶液浸泡加速腐蚀试验下涂层钢筋的退化模型服从一个项数的指数函数. 基于Wiener退化过程,考虑个体差异性的涂层钢筋在25 000 d左右发生严重锈蚀,未考虑个体差异性的涂层钢筋在30 000 d左右发生严重锈蚀.


关键词: 涂层钢筋,  个体差异,  耐久性退化,  加速腐蚀试验,  Wiener函数 
种类 ρ/
(g·mL?1
pH wa/
%
Rw-r/
%
Rb/
%
${f_{{\rm{cu}},{\rm{k}}}}/{\rm{MPa}}$ d
3 d 7 d 28 d
PCA(I) 0.000 3 8.08 ≤3.88 34 0 168 149 139 0.02
Tab.1 Physical indicators of water reducing agent
kg/m3
材料 密度 材料 密度
轻烧氧化镁 388.96 砂子 625.00
减水剂 16.02 石子 1 162.00
I级粉煤灰 68.64 工业氯化镁 147.81
耐水剂 4.58 135.59
Tab.2 Mixing proportion of magnesium oxychloride cement concrete(MOCC)
J / (μA·cm?2 锈蚀情况 J / (μA·cm?2 锈蚀情况
[0, 1) 无锈蚀 [0.5, 1) 中等腐蚀
[0.1, 0.5) 低腐蚀 [1, +∞) 严重腐蚀
Tab.3 Corresponding relationship between corrosion current density and corrosive degree of rebars
Fig.1 Polarization curve of coated steel bar from 0 to 990 d
x/d J /(10?3 μA·cm?2
A组 B组 C组
0 0.045 0.039 0.047
90 0.260 0.482 0.385
180 0.685 0.856 0.754
270 1.130 1.060 1.120
360 1.280 1.160 1.260
450 1.460 1.270 1.180
540 1.580 1.330 1.460
630 1.710 1.650 1.850
720 1.940 2.150 2.240
810 2.380 2.470 2.780
900 3.590 3.270 2.690
990 3.280 3.470 3.030
Tab.4 Corrosion current density of coated steel bar
Fig.2 Autocorrelation function curve of unary Wiener degradation process
μA /cm2
${\varDelta _{ {t_i} - {t_{i - 1} } } }$ ΔJ /10?3
A组 B组 C组
${\varDelta _{{t_1} - {t_0}}}$ 0.215 0.443 0.338
${\varDelta _{{t_2} - {t_1}}}$ 0.425 0.374 0.369
${\varDelta _{{t_3} - {t_2}}}$ 0.445 0.204 0.366
${\varDelta _{{t_4} - {t_3}}}$ 0.150 0.100 0.140
${\varDelta _{{t_5} - {t_4}}}$ 0.180 0.110 ?0.080
${\varDelta _{{t_6} - {t_5}}}$ 0.120 0.060 0.280
${\varDelta _{{t_7} - {t_6}}}$ 0.130 0.320 0.390
${\varDelta _{{t_8} - {t_7}}}$ 0.230 0.500 0.390
${\varDelta _{{t_9} - {t_8}}}$ 0.440 0.320 0.540
${\varDelta _{{t_{10}} - {t_9}}}$ 1.210 0.800 ?0.090
${\varDelta _{{t_{11}} - {t_{10}}}}$ ?0.310 0.300 0.340
Tab.5 Corrosion current density increment of coated steel bar
Fig.3 Probability diagram of corrosion current density increment
Fig.4 Fitting chart of corrosion current density of three groups of coated steel bars
估计方法 ${\mu _a}$/10?5 $\hat \sigma _a^{\rm{2}}$ b c ${\rm{ln } }\,L\left( \theta \right)$ AIC
M-1 0.690 9.660×10?14 0.002 1 73.84 ?139.6
M-2-A 4.500 3.400×10?6 ? ? ?473.8 946.3
M-2-B 4.432 3.398×10?6 ? ? ?442.6 881.2
M-2-C 4.714 3.523×10?6 ? ? ?432.5 861.0
Tab.6 Parameter estimation results of considering and not considering individual differences
Fig.5 Reliability function curve and probability density curve of different methods
[1]   文静, 余红发, 吴成友, 等 氯氧镁水泥水化历程的影响因素及水化动力学[J]. 硅酸盐学报, 2013, 41 (5): 588- 596
WEN Jing, YU Hong-fa, WU Cheng-you, et al Hydration kinetic and influencing parameters in hydration process of magnesium oxychloride cement[J]. Journal of The Chinese Ceramic Society, 2013, 41 (5): 588- 596
doi: 10.7521/j.issn.0454-5648.2013.05.03
[2]   MA?URANIC C, BILINSKI H, MATKOVIC B Reaction products in the system MgCl2-NaOH-H2O[J]. Journal of the American Ceramic Society, 1982, 65 (10): 523- 526
doi: 10.1111/j.1151-2916.1982.tb10346.x
[3]   乔宏霞, 巩位, 王鹏辉, 等 硫酸盐环境氯氧镁水泥混凝土中钢筋防护试验[J]. 西南交通大学学报, 2017, 52 (2): 247- 253
QIAO Hong-xia, GONG Wei, WANG Peng-hui, et al Experimental study on steel reinforcement protection in magnesium oxychloride cement concrete under sulfate environment[J]. Journal of Southwest Jiaotong University, 2017, 52 (2): 247- 253
doi: 10.3969/j.issn.0258-2724.2017.02.006
[4]   乔宏霞, 巩位, 陈广峰, 等 基于极化曲线的镁水泥混凝土中钢筋腐蚀试验[J]. 华中科技大学学报: 自然科学版, 2016, 44 (1): 6- 10
QIAO Hong-xia, GONG Wei, CHEN Guang-feng, et al Experimental study on corrosion of steel bar in magnesium cement concrete based on polarization curves[J]. Journal of Huazhong University of Science and Technology: Nature Science, 2016, 44 (1): 6- 10
[5]   乔宏霞, 巩位, 高升, 等 镁水泥混凝土中钢筋的电化学腐蚀研究[J]. 材料科学与工艺, 2016, 24 (1): 63- 69
QIAO Hong-xia, GONG Wei, GAO Sheng, et al Electrochemical corrosion of steel bar in the magnesium cement concrete[J]. Materials Science and Technology, 2016, 24 (1): 63- 69
doi: 10.11951/j.issn.1005-0299.20160110
[6]   FAN J, YUNG K C, PECHT M Lifetime estimation of high-power white led using degradation-data-driven method[J]. IEEE Transactions on Device and Materials Reliability, 2012, 12 (2): 470- 477
doi: 10.1109/TDMR.2012.2190415
[7]   SUN Q, KVAM P H Multi-cause degradation path model: a case study on rubidium lamp degradation[J]. Quality and Reliability Engineering International, 2011, 27 (6): 781- 793
doi: 10.1002/qre.1159
[8]   SI X S, WANG W B, CHEN M Y, et al A Degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2012, 226 (1): 53- 66
[9]   邓爱民, 陈循, 张春华, 等 基于性能退化数据的可靠性评估[J]. 宇航学报, 2006, 27 (3): 546- 552
DENG Ai-min, CHEN Xun, ZHANG Chun-hua, et al Reliability assessment based on performance degradation data[J]. Journal of Astronautics, 2006, 27 (3): 546- 552
doi: 10.3321/j.issn:1000-1328.2006.03.044
[10]   赵建印, 刘芳 加速退化失效产品可靠性评估方法[J]. 哈尔滨工业大学学报, 2009, 40 (10): 1669- 1671
ZHAO Jian-yin, LIU Fang Reliability assessment from accelerated performance degradation tests[J]. Journal of Harbin Institute of Technology, 2009, 40 (10): 1669- 1671
[11]   JIANG R, JARDINE A Health state evaluation of an item: a general framework and graphical representation[J]. Reliability Engineering and System Safety, 2008, 93 (1): 89- 99
doi: 10.1016/j.ress.2006.10.018
[12]   张永强, 刘琦, 周经伦 小子样条件下基于Normal-Poisson过程的性能可靠性评定[J]. 国防科技大学学报, 2006, 28 (3): 128- 132
ZHANG Yong-qiang, LIU Qi, ZHOU Jing-lun Reliability evaluation based on normal-poisson process on condition of small sampling test[J]. Journal of National University of Defense Technology, 2006, 28 (3): 128- 132
doi: 10.3969/j.issn.1001-2486.2006.03.027
[13]   KLUTKE G A, YANG Y The availability of inspected systems subject to shocks and graceful degradation[J]. IEEE Transactions on Reliability, 2002, 51 (3): 371- 374
doi: 10.1109/TR.2002.802891
[14]   HSIEH M H, JENG S L, SHEN P S Assessing device reliability based on scheduled discrete degradation measurements[J]. Probabilistic Engineering Mechanics, 2009, 24 (2): 151- 158
doi: 10.1016/j.probengmech.2008.04.003
[15]   王小林, 程志君, 郭波 基于维纳过程金属化膜电容器的剩余寿命预测[J]. 国防科技大学学报, 2011, 33 (4): 146- 151
WANG Xiao-lin, CHENG Zhi-jun, GUO Bo Residual life forecasting of metallized film capacitor based on wiener process[J]. Journal of National University of Defense Technology, 2011, 33 (4): 146- 151
doi: 10.3969/j.issn.1001-2486.2011.04.028
[16]   TANG J, SU T S Estimating failure time distribution and its parameters based on intermediate data from a Wiener degradation model[J]. Naval Research Logistics, 2008, 55 (3): 265- 276
doi: 10.1002/nav.20280
[17]   乔宏霞, 王鹏辉, 巩位, 王旭峰, 张建平 久美特涂层对镁水泥混凝土中钢筋保护试验研究[J]. 硅酸盐通报, 2016, 35 (12): 4166- 4172
QIAO Hong-xia X, WANG Peng-hui, GONG Wei, et al Geomet coating protection test to steel bars of magnesium oxychloride cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35 (12): 4166- 4172
[18]   罗刚, 施养抗 钢筋混凝土构件中钢筋锈蚀量的无损检测方法[J]. 福建建筑, 2002, 9 (4): 55- 57
LUO Gang, SHI Yang-kang Review of non-destructive methods in assessment corrosion in reinforced concrete member[J]. Fujian Architecture and Construction, 2002, 9 (4): 55- 57
[19]   ISGOR, O B, A durability model for chloride and carbonation induced steel corrosion in reinforced concrete members [D]. Canada: Carleton University, 2002: 27.
[20]   COX D R, MILLER H D. The theory of stochastic processes [M]. London: Chapman and Hall, 1965: 4.
[21]   唐圣金, 郭晓松, 周召发, 等 步进应力加速退化试验的建模与剩余寿命估计[J]. 机械工程学报, 2014, 50 (16): 33- 40
TANG Sheng-jin, GUO Xiao-song, ZHOU Zhao-fa, et al Step stress accelerated degradation process modeling and remaining useful life estimation[J]. Journal of Mechanical Engineering, 2014, 50 (16): 33- 40
[22]   蔡忠义, 陈云翔, 张诤敏, 等 非线性步进加速退化数据的可靠性评估方法[J]. 北京航空航天大学学报, 2016, 42 (3): 576- 582
CAI Zhong-yi, CHEN Yun-xiang, ZHANG Zheng-min, et al Reliability assessment method of nonlinear step-stress accelerated degradation data[J]. Journal of Beijing University of Aeronautics and Astr, 2016, 42 (3): 576- 582
[23]   WHITMORE G A, SCHENKELBERG F Modeling accelerated degradation data using Wiener diffusion with a time scale transformation[J]. Lifetime Data Analysis, 1997, 3 (1): 27- 54
doi: 10.1023/A:1009664101413
[24]   PENG C Y, TSENG S T Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability, 2009, 58 (3): 444- 455
doi: 10.1109/TR.2009.2026784
[25]   乔宏霞, 朱彬荣, 路承功, 等 基于Wiener随机过程的混凝土加速寿命试验[J]. 建筑材料学报, 2016, 19 (6): 1023- 1027
QIAO Hong-xia, ZHU Bin-rong, LU Cheng-gong, et al Accelerated life test of concrete based on Wiener stochastic process[J]. Journal of Building Materials, 2016, 19 (6): 1023- 1027
doi: 10.3969/j.issn.1007-9629.2016.06.012
[1] Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.
[2] Xiao-hu WANG,Ni-du JIKE,Shan CHEN,Yu-xuan QI,Yu PENG,Qiang ZENG. Water imbibition in concrete in-situ traced by transmission X-ray radiography[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 727-732.
[3] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[4] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[5] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2047-2057.
[6] Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.
[7] Xiao-tian LI,Chu-xin WANG,Yong-qiang YU. Rheological distribution algorithm of cement paste based on particle-flow-interaction theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2264-2270.
[8] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.
[9] OU Zu-min, SUN Lu. Flexural fatigue-life reliability of frost-damaged concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1074-1081.
[10] LI Jing, WANG Zhe. Deformation properties of concrete under quasi plane stress sate[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 745-751.
[11] WEN Xiao-dong, CAI Yu-liang, ZHAO Li, FENG Lei. Sulfate resistance of concrete by machine-made tuff sand at low temperature[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 532-537.
[12] XIONG Hai Bei, CAO Ji Xing, ZHANG Feng Liang. Displacement monitoring method for frame tube structure with strengthened stories[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1752-1760.
[13] WU Meng, JI Yong sheng, CHEN Xiao feng, ZHANG Ling lei. Effects of superfine fly ash on thaumasite form of sulfate attack[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1479-1485.
[14] XIONG Hai bei, LI Ben ben, JIANG Jia fei. Applicability of stress strain model for FRP confined concrete cylinders[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2363-2375.
[15] DUAN An, ZHANG Da wei, ALNAGGAR Mohammed. Microplane modeling of ASR effects on concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1939-1945.