Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1986-1992    DOI: 10.3785/j.issn.1008-973X.2021.10.021
    
Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery
Shuai-lin WANG1(),Lei SHENG1,2,Li-na QI3,Yi-dong FANG1,Kang LI1,Lin SU1,*()
1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3. Physics Teachers’ Office, The Third Senior High School of Lankao, Kaifeng 475300, China
Download: HTML     PDF(1160KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A thermal parameter characterization method suitable for this battery was proposed aiming at the problem of the thermophysical parameters determination for large-format pouch lithium-ion battery cell. A theoretical model of heat transfer of the battery was established based on the principle of quasi-steady-state heat conduction. Experiments were conducted to analyze the dependence of the specific heat capacity at constant pressure and thermal conductivity of the battery on the temperature. The influence of heat loss on the test results was analyzed, and the validity of the test method was verified. Results show that the cell specific heat increases linearly as the increasing temperature, and the temperature has a minor effect on the cell thermal conductivity. The thermal parameters in the temperature range of 10~60 °C for the cell can be measured within 900 s. The experimental results show that the test precise overtops 92.3%, which has the advantages of short measurement cycle, high accuracy and flexible testing.



Key wordslarge-scale pouch lithium-ion battery      specific heat capacity at constant pressure      thermal conductivity      quasi-steady-state heat conduction principle     
Received: 09 December 2020      Published: 27 October 2021
CLC:  TM 911  
Corresponding Authors: Lin SU     E-mail: mo12134@163.com;linsu@usst.edu.cn
Cite this article:

Shuai-lin WANG,Lei SHENG,Li-na QI,Yi-dong FANG,Kang LI,Lin SU. Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1986-1992.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.021     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1986


大型软包锂离子电池的热物性实验研究

针对大型软包锂离子电池热物性参数的测定问题,提出适用于该型电池的热参数表征方法. 基于准稳态导热原理,建立电池的传热理论模型. 开展实验研究电池的比定压热容和导热系数与温度的依变关系,分析热损对测试结果的影响,对测试方法的有效性进行验证. 结果表明,电池比定压热容随着温度的升高而线性增大,导热系数受温度的影响较小. 在900 s内可以测得电池热参数在10~60 °C下的变化状况,实验验证结果显示测算精度高于92.3%,具有测算周期短、准确度高和测试灵活等优势.


关键词: 大型软包锂离子电池,  比定压热容,  导热系数,  准稳态导热原理 
Fig.1 Diagram of battery heating analysis
参数 数值
尺寸(长×宽×高)/mm 300×100×11.2
质量/g 781.50
标称容量/(A·h) 55
标称电压/V 3.6
放电截止电压/V 2.8
充电截止电压/V 4.2
工作温度/°C 充电 0~45,放电 ?20~60
Tab.1 Parameters of pouch ternary lithium-ion battery
Fig.2 Experimental device of thermophysical parameters test and layout diagram of thermocouple
装置 型号/材质 精度
保温盒 EPE珍珠棉(700×300×180 mm3 ?
恒温箱 HS-250 L ±0.5 oC
稳压电源 DC 30 V10 A 0.001 A,0.01 V
薄膜加热器 厚0.22 mm 1%
热电偶 T型 0.4%
热流计 LR8432(53.5 mm×10 mm×0.28 mm) 2%
Tab.2 Specifications of experimental equipment and measuring devices of thermophysical parameter test
Fig.3 Curve of battery temperature change and heat flow loss density
Fig.4 Temperature difference between cold and hot surfaces of battery and average temperature change rate
Fig.5 Curve relationship between specific heat capacity at constant pressure and temperature
Fig.6 Thermal conductivity vs. temperature curve
Fig.7 Physical image of plexiglass (with heating film)
热物性参数 cp /(J ·kg?1·K?1 κx /(W·m?1·K?1
参考值 1464 0.180
测量值 1351 0.175
Tab.3 Error analysis of thermal parameter test of plexiglass
[1]   LU D, LIN S, HU S, et al Thermal behavior and failure mechanism of large format lithium-ion battery[J]. Journal of Solid State Electrochemistry, 2020, 25 (1): 315- 325
doi: 10.1007/s10008-020-04810-z
[2]   GOMEZ J, NELSON R, KALU E E, et al Corrigendum to “equivalent circuit model parameters of a high-power Li-ion battery: thermal and state of charge effects”[J]. Power Sources, 2011, 196 (10): 4826- 4831
doi: 10.1016/j.jpowsour.2010.12.107
[3]   WANG H C, SHENG L, GHULAM Y, et al Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188- 215
doi: 10.1016/j.ensm.2020.08.014
[4]   程夕明, 唐宇, 王寿群 锂离子电池热物性参数测量方法综述[J]. 机械工程学报, 2019, 55 (14): 140- 150
CHENG Xi-ming, TANG Yu, WANG Shou-qun Overview of measurement methods for thermal properties of lithium-ion batteries[J]. Chinese Journal of Mechanical Engineering, 2019, 55 (14): 140- 150
doi: 10.3901/JME.2019.14.140
[5]   LOGES A, HERBERGER S, WERNER D, et al Thermal characterization of Li-ion cell electrodes by photothermal deflection spectroscopy[J]. Journal of Power Sources, 2016, 325 (9): 104- 115
[6]   YANG X L, HU X B, CHEN Z, et al Effect of ambient dissipation condition on thermal behavior of a lithium-ion battery using a 3D multi-partition model[J]. Applied Thermal Engineering, 2020, 178 (1): 10- 21
[7]   辛乃龙. 纯电动汽车锂离子动力电池组热特性分析及仿真研究[D]. 吉林: 吉林大学, 2012.
XIN Nai-long. Thermal characteristics analysis and simulation study of lithium-ion power battery pack for pure electric vehicles [D]. Jilin: Jilin University, 2012.
[8]   崔喜风, 张红亮, 龚阳, 等 方形硬壳锂离子动力电池的热物性参数[J]. 中国有色金属学报, 2019, 29 (12): 2747- 2756
CUI Xi-feng, ZHANG Hong-liang, GONG Yang, et al Thermal properties of square hard-shell lithium-ion power batteries[J]. The Chinese Journal of Nonferrous Metals, 2019, 29 (12): 2747- 2756
[9]   VERTIZ G, OYARBIDE M, MACICIOR H, et al Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model[J]. Journal of Power Sources, 2014, 272 (12): 476- 484
[10]   BAZINSKI S J, WANG X Experimental study on the influence of temperature and state-of-charge on the thermophysical properties of an LFP pouch cell[J]. Journal of Power Sources, 2015, 293: 283- 291
doi: 10.1016/j.jpowsour.2015.05.084
[11]   DRAKE S J, WETZ D A, OSTANEK J K, et al Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells[J]. Journal of Power Sources, 2014, 252: 298- 304
doi: 10.1016/j.jpowsour.2013.11.107
[12]   NEIL S, KATHERINE M, RYAN M, et al Novel 18650 lithium-ion battery surrogate cell design with anisotropic thermophysical properties for studying failure events[J]. Journal of Power Sources, 2016, 312: 1- 11
doi: 10.1016/j.jpowsour.2016.01.107
[13]   盛雷, 徐海峰, 苏林, 等 车用磷酸亚铁锂电池的热特性与热物性研究[J]. 汽车工程, 2019, 41 (10): 1152- 1157
SHENG Lei, XU Hai-feng, SU Lin, et al Research on thermal characteristics and thermophysical properties of lithium iron phosphate batteries for vehicles[J]. Automotive Engineering, 2019, 41 (10): 1152- 1157
[14]   FORGEZ C, DO D V, FRIEDRICH G, et al Thermal modeling of a cylindrical LiFePO4 /graphite lithium-ion battery [J]. Journal of Power Sources, 2010, 195 (9): 2961- 2968
doi: 10.1016/j.jpowsour.2009.10.105
[15]   SHENG L, SU L, ZHANG H Y, et al An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, 2019, 180 (2): 724- 732
[16]   SHENG L, SU L, ZHANG H Y, et al Experimental determination on thermal parameters of prismatic lithium-ion battery cells[J]. International Journal of Heat and Mass Transfer, 2019, 139 (16): 231- 239
[17]   吴青余, 张恒运, 李俊伟 校准量热法测量锂电池比定压热容和生热率[J]. 汽车工程, 2020, 42 (1): 59- 65
WU Qing-yu, ZHANG Heng-yun, LI Jun-wei Calibration calorimetry to measure the specific heat capacity and heat generation rate of lithium batteries[J]. Automotive Engineering, 2020, 42 (1): 59- 65
[18]   ZHANG J B, WU B, LI Z, et al Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries[J]. Journal of Power Sources, 2014, 259 (12): 106- 116
[19]   ZHANG X, REINHARDT K, ANANTHARAMAN S Evaluation of convective heat transfer coefficient and specific heat capacity of a lithium-ion battery using infrared camera and lumped capacitance method[J]. Journal of Power Sources, 2019, 412 (2): 552- 558
[20]   卢建航, 孙宏, 尹海山 用准稳态法测定橡胶及橡胶基复合材料的导热系数和比定压热容[J]. 轮胎工业, 2001, 5 (5): 305- 309
LU Jian-hang, SUN Hong, YIN Hai-shan Determination of thermal conductivity and specific heat capacity of rubber and rubber-based composites by quasi-steady-state method[J]. Tire Industry, 2001, 5 (5): 305- 309
doi: 10.3969/j.issn.1006-8171.2001.05.012
[21]   黄锐. 塑料工程手册(上)[M]. 北京: 机械工程出版社, 2000: 223.
[1] Zhao-wen WANG,Hao ZHOU,Jia-wei LUO,Qi-wei WU,Ke-fa CEN. Research on thermal conductivity of storage tank foundation materials after molten salt leakage[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 137-143.
[2] Hong-kun LV,Yu-hao WU,Yan-hao FENG,Ming-jun WANG,Zi-tao YU. Measurement of thermal conductivity of backfill soil for buried power cable[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1971-1977.
[3] Xuan LIU,Jiang-hong WU,Ting XIAN,Ye FENG. Preparation and properties of CaCl2?6H2O/ expanded graphite composite phase change materials[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1291-1297.
[4] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[5] ZHOU Er zhen, YING Ji. Thermal and electrical conductivity of carbon nanotube arrays/epoxy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1671-1676.
[6] YAO Xiao-li, YI Si-yang, FAN Li-wu, XU Xu, YU Zi-tao, GE Jian.
Effective thermal conductivity of moist aerated concrete with different porosities
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1101-1107.
[7] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 330-335.
[8] XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,XU Xu,YU Zi-tao,HU Ya-cai. Numerical investigation of influence of nanofillers on performance of energy storage-based heat sink[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1644-1649.
[9] LUO Kun, JIN Tai, FAN Jian-ren, CEN Ke-fa. Effects of mesh size on droplet evaporation[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2176-2180.
[10] SHU E-Na, XU Jian, FENG Jian-Jiang. Laboratory experimenton thermal conductivity of silty clay[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 180-183.