Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 1971-1977    DOI: 10.3785/j.issn.1008-973X.2020.10.014
    
Measurement of thermal conductivity of backfill soil for buried power cable
Hong-kun LV1(),Yu-hao WU2,*(),Yan-hao FENG2,Ming-jun WANG1,Zi-tao YU2
1. Institute of Electric Power, State Grid Zhejiang Electric Power Limited Company, Hangzhou 310006, China
2. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1451KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Five types of soils with depth of 0.7~1.2 m were collected in Zhejiang Province in order to measure the thermal conductivity of backfill soil for buried power cable and explore its variation with water mass fraction. Fully compacted samples with water mass fraction of 0%, 5%, 10%, 15%, 20%, and 25% were prepared. The thermal conductivity of each sample was determined by thermal probe method at (20±1) °C. Results show that the fastest range that thermal conductivity increases monotonically with water mass fraction is diverse among different soils, such as 10%~15% for coarse soil, 15%~20% for fluvo-aquic soil, and 20%~25% for red soil. When the water mass fraction exceeds 20%, the thermal conductivity of paddy soil, red soil and yellow soil increases monotonically with water mass fraction, but that of coarse soil and fluvo-aquic soil decreases. The thermal conductivity of different soils greatly varies. For example, the thermal conductivity of coarse soil is about twice that of yellow soil under the same conditions.



Key wordsbackfill soil      compaction      water mass fraction      thermal probe method      thermal conductivity     
Received: 18 September 2019      Published: 28 October 2020
CLC:  TK 121  
Corresponding Authors: Yu-hao WU     E-mail: hongkunlv@126.com;11827030@zju.edu.cn
Cite this article:

Hong-kun LV,Yu-hao WU,Yan-hao FENG,Ming-jun WANG,Zi-tao YU. Measurement of thermal conductivity of backfill soil for buried power cable. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1971-1977.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.014     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/1971


直埋电缆回填土导热系数测试

为了测定直埋电缆回填土的导热系数并探究导热系数随水质量分数的变化规律,采集浙江省境内掩深为0.7~1.2 m的5种土壤,分别配制了水质量分数为0%、5%、10%、15%、20%和25%的充分压实的试样,利用热探针法测试了各试样在(20±1) °C时的导热系数. 结果表明:不同土壤的导热系数随水质量分数递增最快的区间不同,如粗骨土为10%~15%,潮土为15%~20%,红壤为20%~25%;水质量分数超过20%后,水稻土、红壤和黄壤的导热系数随着水质量分数递增,粗骨土和潮土的导热系数减小;不同土壤的导热系数差别较大,如粗骨土的导热系数是相同条件下黄壤的2倍左右.


关键词: 回填土,  压实,  水质量分数,  热探针法,  导热系数 
Fig.1 Schematic diagram of thermal probe
土类 所属地区 土壤二普地点 实际采样地点
经度/(°) 纬度/(°) 经度/(°) 纬度/(°)
粗骨土 安吉 119.624 30.525 119.612 30.526
水稻土 临安 119.749 30.253 119.788 30.271
红壤 余杭 119.910 30.292 119.908 30.292
潮土 上虞 120.868 30.033 120.868 30.027
黄壤 武义 119.816 28.893 119.806 28.913
Tab.1 Soil sampling statistics
Fig.2 Main instruments and devices of soil sample preparation and measurement
Fig.3 Schematic diagram of soil sample preparation process
Fig.4 Measuring device of soil thermal conductivity
ww/% $\lambda_{\rm{sd}} $ / (W·m?1·K?1)
粗骨土 水稻土 红壤 潮土 黄壤
0 0.004 0.003 0.004 0.004 0.003
5 0.031 0.014 0.014 0.029 0.008
10 0.074 0.044 0.046 0.051 0.017
15 0.099 0.072 0.047 0.060 0.067
20 0.113 0.099 0.074 0.094 0.053
25 0.090 0.112 0.066 0.090 0.057
Tab.2 Sample standard deviation of thermal conductivity of soil samples
Fig.5 Dry density - water mass fraction curve of soil samples
Fig.6 Thermal conductivity - water mass fraction curve of soil samples
Fig.7 Schematic diagram of particles, aggregates, pores and water in soil
[1]   梁永春. 高压电力电缆载流量数值计算[M]. 1版. 北京: 国防工业出版社, 2012: 1-3.
[2]   中国电力企业联合会. 电力工程电缆设计标准: GB 50217-2018 [S]. 北京: 中国计划出版社, 2018: 34-35.
[3]   陈志龙. 基于有限元法的地下电缆温度场的研究[D]. 武汉: 武汉理工大学, 2014.
CHEN Zhi-long. Research on temperature field of underground cable based on finite element method [D]. Wuhan: Wuhan University of Technology, 2014.
[4]   胡明丽. 基于多物理场耦合模型的高压电力电缆温度场与载流量计算[D]. 广州: 华南理工大学, 2015.
HU Ming-li. Temperature field and current carrying capacity calculation of high voltage power cable based on multiphysics coupling model [D]. Guangzhou: South China University of Technology, 2015.
[5]   ROBERTO D L V, FONTANA L, VALLATI A Experimental study of thermal field deriving from an underground electrical power cable buried in non-homogeneous soils[J]. Applied Thermal Engineering, 2014, 62 (2): 390- 397
doi: 10.1016/j.applthermaleng.2013.09.002
[6]   SALATA F, NARDECCHIA F, ANDREA D L V, et al Underground electric cables a correct evaluation of the soil thermal resistance[J]. Applied Thermal Engineering, 2015, 78: 268- 277
doi: 10.1016/j.applthermaleng.2014.12.059
[7]   段妍. 土壤热物性参数测试及变化规律实验研究[D]. 太原: 太原理工大学, 2015.
DUAN Yan. Experimental study on soil thermal property parameters test and variation law [D]. Taiyuan: Taiyuan University of Technology, 2015.
[8]   MOSTAGHIMI R A J, PFENDER E Measurement of thermal conductivities of soils[J]. W?rme-und Stoffübertragung, 1980, 13 (1/2): 3- 9
[9]   张玲, 黄奕沄, 陈光明 含水分土壤和沙的热导率测定[J]. 制冷与空调, 2008, 8 (5): 66- 68
ZHANG Ling, HUANG Yi-yun, CHEN Guang-ming Determination of thermal conductivity of soil and sand containing water[J]. Refrigeration and Air Conditioning, 2008, 8 (5): 66- 68
[10]   NICOLAS J, ANDRé P, RIVEZ J, et al Thermal conductivity measurements in soil using an instrument based on the cylindrical probe method[J]. Review of Scientific Instruments, 1993, 64 (3): 774- 780
doi: 10.1063/1.1144158
[11]   MODI S K, DURGA P B, BASAVARAJ M Effect of moisture content and temperature on thermal conductivity of Psidium guajava L. by line heat source method (transient analysis)[J]. International Journal of Heat and Mass Transfer, 2014, 78: 354- 359
doi: 10.1016/j.ijheatmasstransfer.2014.06.076
[12]   张忠进, 郎敏, 刘明 线热源法测定金属材料导热系数的原理与测试系统[J]. 吉林大学学报: 工学版, 1996, (1): 80- 84
ZHANG Zhong-jin, LANG Min, LIU Ming Principle and test system for measuring thermal conductivity of metal materials by line heat source method[J]. Journal of Jilin University: Engineering and Technology Edition, 1996, (1): 80- 84
[13]   中国标准化研究院. 中国土壤分类与代码: GB/T 17296-2009 [S]. 北京: 中国标准出版社, 2009: 1-2.
[14]   吴嘉平, 荆长伟, 支俊俊. 浙江省土壤数据库及其应用[M]. 1版. 杭州: 浙江大学出版社, 2014: 1-221.
[15]   国家土壤信息服务平台. 二普典型剖面土种类型[DB/OL]. [2019-07-27]. http://www.soilinfo.cn/map/.
[16]   隋仲义, 唐伟, 王春明, 等 竹木复合材导热性能的研究[J]. 林业科技, 2006, 31 (1): 50- 51
SUI Zhong-yi, TANG Wei, WANG Chun-ming, et al Study on thermal conductivity of bamboo-wood composites[J]. Forestry Technology, 2006, 31 (1): 50- 51
[17]   中华人民共和国水利部. 土工试验方法标准: GB/T 50123-1999 [S]. 北京: 中国计划出版社, 1999: 7-56.
[18]   余无忌. 中国土壤温度特征与年均土壤温度估算方法研究[D]. 沈阳: 沈阳农业大学, 2017.
YU Wu-ji. Study on soil temperature characteristics and annual average soil temperature estimation methods in China [D]. Shenyang: Shenyang Agricultural University, 2017.
[19]   ABU-HAMDEH N H, KHDAIR A I, REEDER R C A comparison of two methods used to evaluate thermal conductivity for some soils[J]. International Journal of Heat and Mass Transfer, 2001, 44 (5): 1073- 1078
doi: 10.1016/S0017-9310(00)00144-7
[20]   于明志, 曹西忠, 王善明, 等 水分含量对土壤导热系数的影响及机理[J]. 山东建筑大学学报, 2012, 27 (2): 152- 154
YU Ming-zhi, CAO Xi-zhong, WANG Shan-ming, et al Effect and mechanism of water content on soil thermal conductivity[J]. Journal of Shandong Jianzhu University, 2012, 27 (2): 152- 154
[21]   皇甫红旺, 晋华 含水率对土壤热物性参数影响的试验研究[J]. 节水灌溉, 2016, (10): 55- 58
HUANG-FU Hong-wang, JIN Hua Experimental study on the effect of water content on soil thermal properties[J]. Water Saving Irrigation, 2016, (10): 55- 58
[1] Xiang-chuan MENG,Jia-zuo ZHOU,Chang-fu WEI,Pan CHEN,Kun ZHANG,Zheng-yan SHEN. Freezing characteristic curve model of saline soil based on generalized Clapeyron equation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2377-2385.
[2] Qiang LUO,Duo-wei LIANG,Teng-fei WANG,Liang ZHANG,Liang-wei JIANG. Engineering properties testing of scoria as railway subgrade fill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2395-2404.
[3] Xuan LIU,Jiang-hong WU,Ting XIAN,Ye FENG. Preparation and properties of CaCl2?6H2O/ expanded graphite composite phase change materials[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1291-1297.
[4] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[5] WANG Qiang, HU Xin-li, XU Ying, ZHOU Chang, XU Chu. Investigation on compaction characteristics and meso-mechanism of soil-rock mixture with soft rock blocks[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2295-2305.
[6] ZHU Ming-ting, ZHANG Qing-song, LI Shu-cai, LI Wei, SUI Hai-tong, YANG Hong-lu. Simulation test for main control factors of soil splitting grouting reinforcement[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2058-2067.
[7] ZHOU Er zhen, YING Ji. Thermal and electrical conductivity of carbon nanotube arrays/epoxy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1671-1676.
[8] YAO Xiao-li, YI Si-yang, FAN Li-wu, XU Xu, YU Zi-tao, GE Jian.
Effective thermal conductivity of moist aerated concrete with different porosities
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1101-1107.
[9] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 330-335.
[10] XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,XU Xu,YU Zi-tao,HU Ya-cai. Numerical investigation of influence of  nanofillers on performance of energy storage-based heat sink[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1644-1649.
[11] LUO Kun, JIN Tai, FAN Jian-ren, CEN Ke-fa. Effects of mesh size on droplet evaporation[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2176-2180.
[12] ZHANG Zhong-miao, ZOU Jian, HE Jing-yu, LIN Cun-gang. Cavity expansion theory of compaction grouting in saturated clay
considering pressure filtration
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1980-1984.
[13] SHU E-Na, XU Jian, FENG Jian-Jiang. Laboratory experimenton thermal conductivity of silty clay[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 180-183.