Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 1978-1985    DOI: 10.3785/j.issn.1008-973X.2020.10.015
    
Absorption of NO2 by magnesium sulfite and ions distribution in liquid phase
Meng-di ZHANG1(),Meng-yue YING1,Yue LIU1,*(),Zhong-biao WU1,2
1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 310058, China
Download: HTML     PDF(1657KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Magnesium sulfite was employed as simulated magnesia wet flue gas desulfurization (WFGD) slurry for NO2 absorption. The NO2 absorption efficiency and the distributions of aqueous ions in the absorption solution under different operating conditions were analyzed. The experimental results show that the presence of oxygen greatly influences on NO2 absorption. The absorption of NO2 mainly occur via a series of chain reactions with SO32?, finally generating SO42? and NO2?. Oxygen can competitively consume SO32?, resulting in a great decrease in NO2 absorption efficiency. The addition of catechol can retard the consumption of SO32? by O2 so that NO2 absorption efficiency can maintain, and this effect is enhanced with an increase of content. The pH value affects the absorption reaction through the existing form of S (IV). The denitrification efficiency reduces under acidic conditions, and increased NO3? content can be observed owing to the disproportionation of NO2?. The accumulation of nitrite ions can slightly inhibit the absorption of NO2, while other anions such as NO3?, SO42? and Cl? have no significant effects. Some metal cations like Mn2+ and Co2+ can accelerate the oxidation rate of SO32?, which affect the absorption of NO2 to some extent.



Key wordsmagnesium sulfite      nitrogen dioxide      aqueous absorption      ions distribution      chain reaction     
Received: 02 September 2019      Published: 28 October 2020
CLC:  X 701  
Corresponding Authors: Yue LIU     E-mail: zhangmd@zju.edu.cn;yueliu@zju.edu.cn
Cite this article:

Meng-di ZHANG,Meng-yue YING,Yue LIU,Zhong-biao WU. Absorption of NO2 by magnesium sulfite and ions distribution in liquid phase. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1978-1985.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.015     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/1978


亚硫酸镁对NO2的液相吸收及产物离子分布

以亚硫酸镁模拟氧化镁湿法脱硫浆液对NO2进行吸收,考察不同操作条件下的NO2吸收效率及吸收液中主要离子的分布情况. 结果表明,O2对吸收过程的影响很大,NO2主要通过与SO32?之间发生的链式反应在液相中产生SO42?和NO2?,O2会与NO2发生竞争作用,极大地消耗了SO32?,导致脱硝效率迅速下降. 抗氧化剂邻苯二酚的添加可以抑制SO32?的氧化,且添加的浓度越高,抑制效果越好. 溶液的pH值主要通过影响S(IV)的存在形态来影响吸收反应,当pH值较低时,吸收反应的速率降低,且在酸性条件下,NO2?易发生歧化反应转化为NO3?. NO2?的累积将会在一定程度上降低NO2的吸收,其他阴离子NO3?、SO42?及Cl?对NO2的吸收无明显影响. 金属阳离子例如Mn2+及Co2+会加速SO32?的氧化,在一定程度上影响NO2的吸收.


关键词: 亚硫酸镁,  二氧化氮,  液相吸收,  离子分布,  链式反应 
Fig.1 Schematic diagram of experimental setup for NO2 absorption
Fig.2 Effect of O2 on NO2 absorption efficiency and pH
Fig.3 Effect of O2 on ions distribution
Fig.4 Effect of initial pH on NO2 absorption efficiency and pH value variation
Fig.5 Effect of initial pH on ions distribution
Fig.6 Effect of pH on NO2 absorption rate
Fig.7 Effect of catechol concentration on NO2 absorption efficiency and pH
Fig.8 Effect of catechol concentration on ions distribution
Fig.9 Effect of different anions on NO2 absorption efficiency and pH
Fig.10 Effect of NO2 on ions distribution
Fig.11 Effect of metal cations on NO2 absorption efficiency and pH
Fig.12 Effect of metal cations on ions distribution
[1]   PIERRET M C, VIVILLE D, DAMBRINE E, et al Twenty-five year record of chemicals in open field precipitation and throughfall from a medium-altitude forest catchment (Strengbach - NE France): an obvious response to atmospheric pollution trends[J]. Atmospheric Environment, 2019, 202: 296- 314
doi: 10.1016/j.atmosenv.2018.12.026
[2]   HE H, WANG Y S, MA Q X, et al Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days [J]. Scientific Reports, 2014, 4: 4172
[3]   WANG X Q, LIU Y, WU Z B Highly active NbOPO4 supported Cu-Ce catalyst for NH3-SCR reaction with superior sulfur resistance [J]. Chemical Engineering Journal, 2019, 382: 122941
[4]   MENG Z H, WANG C Y, WANG X R, et al Simultaneous removal of SO2 and NOx from flue gas using (NH4)2S2O3/steel slag slurry combined with ozone oxidation [J]. Fuel, 2019, 255: 115760
doi: 10.1016/j.fuel.2019.115760
[5]   LI G, WANG B D, XU W Q, et al Simultaneous removal of SO2 and NOx from flue gas by wet scrubbing using a urea solution [J]. Environmental Technology, 2019, 40 (20): 2620- 2632
doi: 10.1080/09593330.2018.1454513
[6]   JIA Y, DU D Q, ZHANG X X, et al Simultaneous removal of SO2 and NOX with ammonia absorbent in a packed column [J]. Korean Journal of Chemical Engineering, 2013, 30 (9): 1735- 1740
doi: 10.1007/s11814-013-0091-y
[7]   SKALSKA K, MILLER J S, LEDAKOWICZ S Trends in NOx abatement: a review [J]. Science of the Total Environment, 2010, 408 (19): 3976- 3989
doi: 10.1016/j.scitotenv.2010.06.001
[8]   [J]. 2014, 274: 376- 383
[9]   LI F B, LI X Z, AO C H, et al Photocatalytic conversion of NO using TiO2–NH3 catalysts in ambient air environment [J]. Applied Catalysis B: Environmental, 2004, 54 (4): 275- 283
doi: 10.1016/j.apcatb.2004.09.006
[10]   TANG N, LIU Y, WANG H Q, et al Mechanism study of NO catalytic oxidation over MnOx/TiO2 catalysts [J]. The Journal of Physical Chemistry C, 2011, 115 (16): 8214- 8220
doi: 10.1021/jp200920z
[11]   WU C Y, CHOU M S Reduction of nitrogen dioxide from etching vent gases by scrubbing with caustic sodium sulfide solution[J]. Journal of Chemical Technology and Biotechnology, 2014, 89 (12): 1850- 1858
doi: 10.1002/jctb.4266
[12]   SUN Y, HONG X W, ZHU T L, et al The chemical behaviors of nitrogen dioxide absorption in sulfite solution[J]. Applied Sciences, 2017, 7 (4): 377
doi: 10.3390/app7040377
[13]   KORALEGEDARA N H, PINTO P X, DIONSIOU D D, et al Recent advances in flue gas desulfurization gypsum processes and applications: a review[J]. Journal of Environmental Management, 2019, 251: 109572
doi: 10.1016/j.jenvman.2019.109572
[14]   TANG N, LIU Y, WANG H Q, et al Enhanced absorption process of NO2 in CaSO3 slurry by the addition of MgSO4[J]. Chemical Engineering Journal, 2010, 160 (1): 145- 149
doi: 10.1016/j.cej.2010.03.022
[15]   WANG Z H, ZHANG X, ZHOU Z J, et al Effect of additive agents on the simultaneous absorption of NO2 and SO2 in the calcium sulfite slurry [J]. Energy and Fuels, 2012, 26 (9): 5583- 5589
doi: 10.1021/ef3007504
[16]   SUN Y, MENG Y, GUO X Y, et al Study of nitrogen oxide absorption in the calcium sulfite slurry[J]. Journal of Material Cycles and Waste Management, 2016, 18 (4): 618- 624
doi: 10.1007/s10163-016-0526-8
[17]   唐念. Mn/TiO2催化氧化NO联合CaSO3浆液吸收的烟气脱硝新工艺研究[D]. 杭州: 浙江大学, 2011: 72-75.
TANG Nian. New combined process for flue gas denitrification: NO catalytic oxidation over Mn/TiO2 catalysts and absorption with CaSO3 slurry [D]. Hangzhou: Zhejiang University, 2011: 72-75.
[18]   PASIUK B W, BRONIKOWSKI T, ULEJCZYK M Mechanism and kinetics of autoxidation of calcium sulfite slurries[J]. Environmental Science and Technology, 1992, 26 (10): 1976- 1981
doi: 10.1021/es00034a015
[19]   WU B B, TIAN H Z, HAO Y, et al Effects of wet flue gas desulfurization and wet electrostatic precipitators on emission characteristics of particulate matter and its ionic compositions from four 300 MW level ultralow coal-fired power plants[J]. Environmental Science and Technology, 2018, 52 (23): 14015- 14026
doi: 10.1021/acs.est.8b03656
[20]   CRONKRIGHT W A, LEDDY W J Improving mass transfer characteristics of limestone slurries by use of magnesium sulfate[J]. Environmental Science and Technology, 1976, 10 (6): 569- 572
doi: 10.1021/es60117a003
[21]   俎玉筠 工业废水中亚硝酸盐的处理[J]. 工业水处理, 1990, 10 (4): 32- 33
ZU Yu-yun Treatment of nitrite in industrial wastewater[J]. Industrial Water Treatment, 1990, 10 (4): 32- 33
[22]   REZAEI H, JAFARI A, KAMAREHIE B, et al Health-risk assessment related to the fluoride, nitrate, and nitrite in the drinking water in the Sanandaj, Kurdistan County, Iran[J]. Human and Ecological Risk Assessment, 2019, 25 (5): 1242- 1250
doi: 10.1080/10807039.2018.1463510
[23]   LITTLEJIHN D, WANG Y Z, CHANG S G Oxidation of aqueous sulfite ion by nitrogen dioxide[J]. Environmental Science and Technology, 1993, 27 (10): 2162- 2167
doi: 10.1021/es00047a024
[24]   汪黎东. 烟气脱硫添加剂对正盐生成促进的实验研究[D]. 保定: 华北电力大学(保定), 2005: 36-37.
WANG Li-dong. Experimental studies on accelerating effect of flue gas desulfurization additives for formation of sulfate [D]. Baoding: North China Electric Power University, 2005: 36-37.
[25]   张相. 臭氧结合钙基吸收多种污染物及副产物提纯的试验与机理研究[D]. 杭州: 浙江大学, 2012: 57-58.
ZHANG Xiang. Experimental and mechanism investigation on multi-pollutant absorption by ozone with calcium based scrubbing and by-product treatment [D]. Hangzhou: Zhejiang University, 2012: 57-58.
[26]   郭东明. 脱硫工程技术与设备[M]. 北京: 化学工业出版社, 2012: 29-30.
[27]   HUIE R E, NETA P Rate constants for some oxidations of S(IV) by radicals in aqueous solutions[J]. Atmospheric Environment (1967), 1987, 21 (8): 1743- 1747
doi: 10.1016/0004-6981(87)90113-2
[28]   WANG L D, ZHAO Y Kinetics of sulfite oxidation in wet desulfurization with catalyst of organic acid[J]. Chemical Engineering Journal, 2008, 136 (2/3): 221- 226
[29]   CLIFTON C, ALTSTEIN N, HUIE R Rate constant for the reaction of nitrogen dioxide with sulfur(IV) over the pH range 5.3-13[J]. Environmental Science and Technology, 1988, 22 (5): 586- 589
doi: 10.1021/es00170a018
[30]   SHEN C H, ROCHELLE G T Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite[J]. Environmental Science and Technology, 1998, 32 (13): 1994- 2003
doi: 10.1021/es970466q
[31]   WU Q, SUN C L, WANG H Q, et al The role and mechanism of triethanolamine in simultaneous absorption of NOx and SO2 by magnesia slurry combined with ozone gas-phase oxidation [J]. Chemical Engineering Journal, 2018, 341: 157- 163
doi: 10.1016/j.cej.2018.01.150
[32]   汪黎东, 赵毅, 马永亮, 等 苯酚抑制条件下亚硫酸盐氧化的本征反应动力学[J]. 化学学报, 2008, 66 (21): 2336- 2340
WANG Li-dong, ZHAO Yi, MA Yong-liang, et al Intrinsic kinetics of sulfite oxidation with inhibitor of phenol[J]. Acta Chimica Sinica, 2008, 66 (21): 2336- 2340
doi: 10.3321/j.issn:0567-7351.2008.21.004
[33]   魏刚, 熊蓉春, 张小冬 某些物质对亚硫酸盐氧化的阻滞作用[J]. 水处理技术, 1999, 25 (5): 277- 280
WEI Gang, XIONG Rong-chun, ZHANG Xiao-dong Inhibition of some materials on sulfite oxidation[J]. Technology of Water Treatment, 1999, 25 (5): 277- 280
doi: 10.3969/j.issn.1000-3770.1999.05.007
[34]   王秉, 胡智文, 郑海玲, 等 β-环糊精-Cu(Ⅱ)配合物催化氧化邻苯二酚及其反应动力学[J]. 化工学报, 2009, 60 (6): 1459- 1465
WANG Bing, HU Zhi-wen, ZHENG Hai-ling, et al Oxidation of catechol catalyzed by β-cyclodextrin-Cu(II) complexes and its reaction kinetics[J]. Journal of Chemical Industry and Engineering(China), 2009, 60 (6): 1459- 1465
doi: 10.3321/j.issn:0438-1157.2009.06.019
[1] XU Xi, XU Dian, YAN Pei, ZHU Wei-zhuo, ZHENG Cheng-hang, GAO Xiang, LUO Zhong-yang, NI Ming-jiang, CEN Ke-fa. Particle collection in wire-plate electrostatic precipitators at high temperature[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 487-493.
[2] YU Jin pin, QIU Kun zan, SONG Hao, GAO Xiang, ZHOU Jin song. Catalytic oxidation experiment of element mercury over Cr/TiO2 catalyst[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2186-2192.
[3] LIN Fa-wei, ZHU Yan-qun, XU Chao-qun, MA Qiang, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Experimental study on residual ozone decomposition in process of multi-pollutants removal by ozone[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1249-1254.
[4] WAN Yi, HUANG Wei-wei, ZHENG Cheng-hang, GAO Xiang, CEN Ke-fa. Spray characteristics of wet electrostatic precipitator[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 336-343.
[5] WANG Hui-ting, DING Hong-lei, YAO Guo-xin, ZHANG Yong-xin,. Experimental study on SO2 absorption rate enhanced by additive in limestone-gypsum WFGD process[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 50-55.
[6] MAO Jian-hong,JIANG Xin-wei,ZHONG Yi,SONG Hao,WU Wei-hong,PAN Shu-ping,GAO Xiang. The effect of splitters layout at variable cross-section
inclined flue on AIG inlet flow field
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1453-1457.
[7] MAO Jian-hong,SONG Hao,WU Wei-hong,ZHONG Yi,GAO Xiang,LUO Zhong-yang,CEN Ke-fa. Design and optimization of splitters in SCR system for coal fired boiler[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1124-1129.
[8] YANG Jian-tao, PAN Hua, CHEN Jie, SU Qing-fa, WANG Da-hui, SHI Yao. Two-stage system of non-thermal plasma and adsorption for
decomposition of hydrogen sulfide
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2411-2415.