Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (2): 388-397    DOI: 10.3785/j.issn.1008-973X.2022.02.020
    
Surface removal mechanism study of SiCp/Al composites based on single-point cutting test
Hong-zhe ZHANG1(),Xu ZHANG1,Xiao-chun ZHU1,Yong-jie BAO2,*()
1. Engineering Training Center, Dalian University of Technology, Dalian 116023, China
2. Marine Engineering College, Dalian Maritime University, Dalian 116026, China
Download: HTML     PDF(6269KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

SiC particle reinforced aluminum matrix (SiCp/Al) composites contain irregular silicon carbide particles, causing a large number of non ideal cross-sections in the material, which makes it difficult to remove the surface of the material effectively. Simulation analysis and experimental verification of surface removal of SiCp/Al composite with variable cutting depth were carried out, in order to reveal the mechanism of material removal. Results show that the interface failure has an important impact on surface formation and there are removal processes such as aluminum alloy matrix tearing, interface separating; silicon carbide particles exposing, crack propagation, breaking and falling off, pressing into aluminum alloy matrix, debris sliding against the material surface, etc. The large area of the silicon carbide particles crushing and falling off, causes pit defect and the material is subjected to secondary cutting under the tool push, so that the surface of the aluminum matrix forms non-continuous cracks. In SiCp/Al composites, the actual cutting depth is less than the nominal cutting depth due to the existence of aluminum alloy matrix. Research in this paper can provide some references for the study of removal mechanism and processing of SiCp/Al composites.



Key wordsSiCp/Al composite      single-point cutting test      defect formation mechanism      cutting simulation      pit defect      crack     
Received: 08 April 2021      Published: 03 March 2022
CLC:  TB 331  
Corresponding Authors: Yong-jie BAO     E-mail: zhanghongzhe@dlut.edu.cn;yongjie@dlmu.edu.cn
Cite this article:

Hong-zhe ZHANG,Xu ZHANG,Xiao-chun ZHU,Yong-jie BAO. Surface removal mechanism study of SiCp/Al composites based on single-point cutting test. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 388-397.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.02.020     OR     https://www.zjujournals.com/eng/Y2022/V56/I2/388


基于单颗磨粒划切试验的SiCp/Al复合材料表面去除机理研究

碳化硅颗粒增强铝基(SiCp/Al)复合材料中含有不规则碳化硅颗粒使得材料内部形成大量非理想截面,为材料表面的有效去除带来困难. 为了揭示材料去除机理,进行SiCp/Al 复合材料单颗磨粒变切深划切的表面去除仿真分析和试验验证. 研究结果表明,界面破坏对表面创成有重要影响,存在铝合金基体撕裂、界面分离,碳化硅颗粒裸露、裂纹扩展、破碎脱落、压入铝合金基体、碎片滑擦材料表面等去除过程,碳化硅颗粒中部大面积破碎脱落形成凹坑,并在刀具推挤作用下对材料进行二次切削,使铝合金基体表面形成非连续裂纹. SiCp/Al复合材料中由于铝合金基体的存在,实际划切深度小于名义切削深度. 研究可以为SiCp/Al复合材料去除机理与加工研究提供一定借鉴.


关键词: SiCp/Al复合材料,  单颗磨粒划切试验,  缺陷形成机理,  划切仿真,  凹坑,  裂纹 
A/MPa B/MPa n C m Tr/K Tm/K
370.4 1798.7 0.73315 0.0128 1.5282 293 863
d1 d2 d3 d4 d5 ? ?
0.116 0.211 ?2.172 0.012 ?0.01256 ? ?
Tab.1 Johnson-Cook constitutive model and failure parameters of 2A12 Al alloy[14-15]
材料
参数
E/
GPa
μ τ/
(10?6 K?1)
ρ/
(103 kg·m?3)
$\lambda $/
(W·m?1·K?1)
c/
(J·kg?1·K?1)
2A12
铝合金
71.7 0.33 26.6 2.77 175 921
碳化硅 420.0 0.14 4.9 3.13 81 427
Tab.2 Physical and mechanical property parameters of 2A12 Al alloy and SiC[15-16]
Fig.1 Mesh generation and boundary conditions of micro scale finite element model for SiCp/Al composites
Fig.2 Experimental device and method of single-point cutting test in accordance with actual grinding parameters
h/μm r/mm v/(m?s?1 Δt/s vf/(mm?min?1 n/(r?min?1)
20 162 5.26 0.10~0.15 100 310
Tab.3 Parameters of single-point cutting test in accordance with actual range of grinding parameters
Fig.3 Surface morphology of 2A12 aluminum alloy, 65% SiCp/2A12 Al composite and SiC ceramic after pretreatment
Fig.4 Simulation of aluminum alloy matrix removal process in SiCp/Al composites
Fig.5 Simulation of formation process of pit defects in SiCp/Al composites caused by SiC particle breakage
Fig.6 Simulation of deformation process of SiC particles removal in SiCp/Al composites
Fig.7 Simulation of secondary cutting process of SiC particles in SiCp/Al composites
Fig.8 Longitudinal section outline curves of three materials and micro morphology of SiCp/Al composites with different cutting depth values
[1]   武高辉 金属基复合材料发展的挑战与机遇[J]. 复合材料学报, 2014, (5): 1228- 1237
WU Gao-hui Challenges and opportunities for the development of metal matrix composites[J]. Journal of Composite Materials, 2014, (5): 1228- 1237
[2]   DONG G J, ZHANG H J, ZHOU M, et al Experimental investigation on ultrasonic vibration-assisted turning of SiCp/Al composites[J]. Advanced Manufacturing Processes, 2013, 28 (9): 999- 1002
[3]   KADIVAR M A, AKBARI J, YOUSEFI R, et al Investigating the effects of vibration method on ultrasonic assisted drilling of Al/SiCp metal matrix composites[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30 (3): 344- 350
doi: 10.1016/j.rcim.2013.10.001
[4]   ZHAO X, GONG Y D, CAI M, et al Numerical and experimental analysis of material removal and surface defect mechanism in scratch tests of high volume fraction SiCp/Al composites[J]. Materials, 2020, 13 (3): 796
doi: 10.3390/ma13030796
[5]   YIN G Q, WANG D, CHENG J Experimental investigation on micro-grinding of SiCp/Al metal matrix composites[J]. International Journal of Advanced Manufacturing Technology, 2019, 102 (9–12): 3503- 3517
doi: 10.1007/s00170-019-03375-0
[6]   WANG Y F, LIAO W H, YANG K, et al Investigation on cutting mechanism of SiCp/Al composites in precision turning[J]. International Journal of Advanced Manufacturing Technology, 2019, 100 (1–4): 963- 972
doi: 10.1007/s00170-018-2650-1
[7]   WANG Y F, LIAO W H, YANG K, et al Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs[J]. International Journal of Advanced Manufacturing Technology, 2019, 100 (5–8): 1393- 1404
doi: 10.1007/s00170-018-2769-0
[8]   LIU J W, CHENG K, DING H, et al Simulation study of the influence of cutting speed and tool-particle interaction location on surface formation mechanism in micromachining SiCp/Al composites[J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2018, 232 (11): 2044- 2056
doi: 10.1177/0954406217713521
[9]   DU J G, MING W Y, CAO Y, et al Particle removal mechanism of high volume fraction SiCp/Al composites by single diamond grit tool[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2019, 32 (2): 324- 331
[10]   ZHA H T, FENG P F, ZHANG J, et al. Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5–8): 2099–2109.
[11]   吴红兵, 贾志欣, 刘刚, 等 航空钛合金高速切削有限元建模[J]. 浙江大学学报:工学版, 2010, 44 (5): 982- 987
WU Hong-bing, JIA Zhi-xin, LIU Gang, et al Finite element modeling for high speed cutting of aeronautical titanium alloy[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (5): 982- 987
[12]   杨勇, 柯映林, 董辉跃 钛合金切削绝热剪切带形成过程的有限元分析[J]. 浙江大学学报:工学版, 2008, 42 (3): 534- 538
YANG Yong, KE Ying-lin, DONG Hui-yue Finite element analysis of adiabatic shear band formation in titanium alloy cutting[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (3): 534- 538
[13]   LIU J, BAI Y, XU C Evaluation of ductile fracture models in finite element simulation of metal cutting processes[J]. Journal of Manufacturing Science and Engineering, 2014, 136 (1): 011010
doi: 10.1115/1.4025625
[14]   李春雷. 2A12铝合金本构关系实验研究[D]. 黑龙江: 哈尔滨工业大学, 2006.
LI Chun-lei. Experimental study on constitutive relationship of 2A12 aluminum alloy [D]. Heilongjiang: Harbin Institute of Technology, 2006
[15]   张伟, 魏刚, 肖新科 2A12铝合金本构关系和失效模型[J]. 兵工学报, 2013, 34 (3): 276- 282
ZHANG Wei, WEI Gang, XIAO Xin-ke Constitutive relation and failure model of 2A12 aluminum alloy[J]. Acta Ordnance Engineering Sinica, 2013, 34 (3): 276- 282
[16]   ZHOU L, HUANG S T, WANG D, et al Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools[J]. International Journal of Advanced Manufacturing Technology, 2011, 52 (5–8): 619- 626
doi: 10.1007/s00170-010-2776-2
[17]   郑伟, 刘岭, 张群, 等 SiCp/Al复合材料超声磨削表面缺陷形成机理仿真研究[J]. 固体火箭技术, 2019, 42 (6): 793- 800
ZHENG Wei, LIU Ling, ZHANG Qun, et al Simulation study on the formation mechanism of surface defects in ultrasonic grinding of SiCp/Al composite materials[J]. Solid Rocket Technology, 2019, 42 (6): 793- 800
[18]   WANG T, XIE L J, WANG X B Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite[J]. International Journal of Advanced Manufacturing Technology, 2015, 79 (5–8): 1185- 1194
doi: 10.1007/s00170-015-6876-x
[19]   XIANG D H, SHI Z L, FENG H R, et al Finite element analysis of ultrasonic assisted milling of SiCp/Al composites[J]. International Journal of Advanced Manufacturing Technology, 2019, 105 (7/8): 3477- 3488
[20]   DANDEKAR C R, SHIN Y C Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (4): 35- 63
[21]   CHANDRA N, LI H, SHET C, et al Some issues in the application of cohesive zone models for metal-ceramic interfaces[J]. International Journal of Solids and Structures, 2002, 39 (10): 2827- 2855
doi: 10.1016/S0020-7683(02)00149-X
[22]   DANDEKAR C R, SHIN Y C Multiphase finite element modeling of machining unidirectional composites. prediction of debonding and fiber damage[J]. Journal of Manufacturing Science and Engineering Transactions of the ASME, 2008, 130 (5): 051016
doi: 10.1115/1.2976146
[23]   ZHANG H, RAMESH K C Effects of interfacial de-bonding on the rate-dependent response of metal matrix composites[J]. Acta Materialia, 2005, 53 (17): 4687- 4700
doi: 10.1016/j.actamat.2005.07.004
[24]   OZEL T The influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools Manufacture, 2006, 46 (5): 518- 530
doi: 10.1016/j.ijmachtools.2005.07.001
[1] Song REN,Qian-wen ZHU,Xin-yue TU,Chao DENG,Xiao-shu WANG. Lining disease identification of highway tunnel based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 92-99.
[2] Hong-hui WANG,Xin FANG,De-jiang LI,Gui-jie LIU. Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 280-288.
[3] Juan-juan REN,Kuan LIU,Wei-hua WANG,Ying ZHANG,Ke-xin YANG,Ming-ming LIU. Evaluation of cracking condition for CRTS Ⅲ prefabricated slab track based on interval analytic hierarchy process[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2267-2274.
[4] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[5] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[6] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.
[7] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[8] Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.
[9] Jia-lei ZHAO,Ding ZHOU,Jian-dong ZHANG,Chao-bin HU. Free vibration characteristics of multi-cracked beam based on Chebyshev-Ritz method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 778-786.
[10] Xiao-wei LIAO,Yuan-qing WANG,Jian-guo WU,Yong-jiu SHI. Fatigue performance of non-load-carrying cruciform fillet-welded joints at low ambient temperature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2018-2026.
[11] Zu-wei HUANG,Jun-qing LEI,Cheng-zhong GUI,Shu-lun GUO. Experimental study of fatigue on orthotropic steel deck of cable-stayed bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1071-1082.
[12] Fei-bin YUAN,Wei-liang JIN,Jiang-hong MAO,Jin-quan WANG,Wei-jie FAN,Jin XIA. Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2317-2324.
[13] Han ZHANG,Xin-li HU,Shuang-shuang WU. Damage evolution of soil-rock mixture based on Fourier series approximations method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1955-1965.
[14] XU Wen-shuai, YANG Lian-zhi, GAO Yang. Plane problems of 2D decagonal quasicrystals of piezoelectric effect with Griffith crack[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 487-496.
[15] QIN Hong-yuan, LIU Yi-ming, HUANG Dan. Peridynamic modelling and simulation for multiple crack propagation in brittle materials[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 497-503.