The free vibration characteristics of multi-cracked beam were analyzed based on the plane stress theory of elasticity by using Chebyshev-Ritz method. The cracked beams were divided into several sections according to their cracks. The products of boundary functions and Chebyshev polynomials were taken as the functions of the displacement, which had good convergence, making the method applicable for different geometric boundary conditions. The vibration equation of each sub-beam could be obtained by using Ritz method. The vibration characteristic equation of the whole cracked beam was established by the continuity conditions of displacements between adjacent sub-beams. The calculation results accorded well with those available from the literature and the finite element analysis. The effects of the structural parameters such as crack depth and location on the natural vibration characteristics of the beam were analyzed. As the crack depth increases, the natural frequency of the cracked beam decreases, the amplitude of the mode shape increases, and the degree of influence is affected by the location of the crack.
Jia-lei ZHAO,Ding ZHOU,Jian-dong ZHANG,Chao-bin HU. Free vibration characteristics of multi-cracked beam based on Chebyshev-Ritz method. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 778-786.
Fig.1Analytical model of beam with two cracks of different depths
Fig.2Analytical model of beam with two cracks of same depth
Fig.3Analytical model of beam with three cracks of different depths
Fig.4Flow chart for calculation of multi-cracked beam
h/L
mn
Ω1
Ω2
Ω3
Ω4
Ω5
Ω6
Ω7
Ω8
0.1
40×10
0.183 7
0.488 4
0.831 2
0.987 1
1.341 8
1.774 1
1.949 6
2.397 6
0.1
50×10
0.183 3
0.488 2
0.828 5
0.986 8
1.341 2
1.769 8
1.948 7
2.397 0
0.1
50×15
0.183 3
0.488 2
0.828 5
0.986 8
1.341 1
1.769 8
1.948 7
2.397 0
0.1
60×15
0.183 1
0.488 0
0.826 7
0.986 6
1.340 7
1.766 8
1.948 1
2.396 6
0.2
40×10
0.436 8
1.055 1
1.379 3
1.611 6
2.536 7
2.620 4
3.272 4
4.115 9
0.2
50×10
0.436 3
1.054 7
1.378 7
1.608 7
2.535 7
2.617 3
3.271 2
4.113 8
0.2
50×15
0.436 2
1.054 6
1.378 6
1.608 5
2.535 7
2.617 1
3.271 1
4.113 6
0.2
60×15
0.435 8
1.054 4
1.378 2
1.606 6
2.535 0
2.614 9
3.270 3
4.112 2
0.3
40×10
0.669 8
1.483 6
1.684 9
2.128 9
3.150 1
3.347 0
4.017 4
4.273 0
0.3
50×10
0.669 2
1.482 9
1.684 4
2.125 6
3.147 7
3.344 5
4.016 5
4.271 3
0.3
50×15
0.669 2
1.482 8
1.684 3
2.125 2
3.147 4
3.344 4
4.016 4
4.271 1
0.3
60×15
0.668 8
1.482 3
1.684 0
2.123 0
3.145 7
3.342 5
4.015 7
4.270 0
Tab.1Convergence of first-eighth frequency parameters Ω of fixed beam
Fig.5Analytical model of cracked fixed beam in ANSYS
参数
方法
Ω1
Ω2
Ω3
Ω4
Ω5
Ω6
Ω7
Ω8
c1/h=0.2,c2/h=0.1
本文方法
0.188 1
0.491 9
0.866 2
0.993 5
1.353 7
1.825 4
1.968 2
2.407 0
c1/h=0.2,c2/h=0.1
有限元法
0.187 5
0.491 8
0.862 2
0.993 2
1.353 2
1.817 9
1.965 8
2.406 6
c1/h=0.3,c2/h=0.2
本文方法
0.183 1
0.488 0
0.826 7
0.986 6
1.340 7
1.766 8
1.948 1
2.396 6
c1/h=0.3,c2/h=0.2
有限元法
0.182 1
0.487 7
0.820 9
0.986 1
1.339 6
1.755 8
1.945 8
2.395 1
c1/h=0.4,c2/h=0.2
本文方法
0.176 9
0.487 6
0.797 4
0.986 3
1.338 1
1.693 4
1.932 7
2.389 9
c1/h=0.4,c2/h=0.2
有限元法
0.175 7
0.487 3
0.791 1
0.985 9
1.336 5
1.680 7
1.930 7
2.387 2
Tab.2Comparison of results of fixed beam with those from FEA(h/L=0.1,d1/L=0.5,d2/L=0.8)
参数
方法
Ω1
Ω2
Ω3
Ω4
Ω5
Ω6
Ω7
Ω8
c1/h=0.2,c2/h=0.1
本文方法
0.085 6
0.336 8
0.692 1
0.978 5
1.177 9
1.668 3
1.977 9
2.259 1
c1/h=0.2,c2/h=0.1
有限元法
0.085 1
0.336 5
0.688 3
0.976 1
1.177 5
1.662 8
1.977 2
2.258 3
c1/h=0.3,c2/h=0.2
本文方法
0.081 3
0.329 0
0.655 5
0.953 6
1.169 6
1.632 8
1.954 3
2.243 9
c1/h=0.3,c2/h=0.2
有限元法
0.080 6
0.328 4
0.649 7
0.949 6
1.168 7
1.626 5
1.952 4
2.242 0
c1/h=0.4,c2/h=0.2
本文方法
0.076 3
0.328 7
0.623 6
0.926 1
1.167 4
1.599 1
1.954 1
2.237 6
c1/h=0.4,c2/h=0.2
有限元法
0.075 2
0.328 1
0.616 6
0.921 1
1.166 2
1.593 5
1.952 4
2.234 7
Tab.3Comparison of results of simply-supported beam with those from FEA(h/L=0.1,d1/L=0.5,d2/L=0.8)
参数
方法
Ω1
Ω2
Ω3
Ω4
Ω5
Ω6
Ω7
Ω8
c1/h=0.2,c2/h=0.1
本文方法
0.031 6
0.185 2
0.493 4
0.501 0
0.886 0
1.386 9
1.476 7
1.881 9
c1/h=0.2,c2/h=0.1
有限元法
0.031 6
0.184 2
0.492 7
0.500 7
0.881 6
1.385 8
1.474 4
1.876 0
c1/h=0.3,c2/h=0.2
本文方法
0.031 3
0.177 0
0.485 2
0.493 4
0.839 7
1.359 1
1.449 0
1.840 2
c1/h=0.3,c2/h=0.2
有限元法
0.031 2
0.175 4
0.483 9
0.492 6
0.833 3
1.356 5
1.444 8
1.834 0
c1/h=0.4,c2/h=0.2
本文方法
0.030 7
0.166 8
0.475 9
0.491 9
0.812 4
1.355 6
1.420 3
1.809 4
c1/h=0.4,c2/h=0.2
有限元法
0.030 6
0.164 7
0.473 8
0.491 1
0.806 2
1.352 4
1.414 8
1.804 3
Tab.4Comparison of results of cantilevered beam with those from FEA(h/L=0.1,d1/L=0.5,d2/L=0.8)
参数
方法
Ω1
d2/L=0.35
d2/L=0.45
d2/L=0.5
d1/L=0.25,c1/h=0.05
有限元解
0.087 8
0.087 7
0.087 7
d1/L=0.25,c1/h=0.05
本文解法
0.088 1
0.088 0
0.088 0
d1/L=0.25,c2/h=0.10
Lourdes解
0.089 7
0.089 6
0.089 6
d1/L=0.25,c2/h=0.10
有限元解
0.083 7
0.082 9
0.082 8
c1/h=0.15,c2/h=0.25
本文解法
0.084 6
0.084 0
0.083 9
c1/h=0.15,c2/h=0.25
Lourdes解
0.087 4
0.087 0
0.086 9
Tab.5Comparison of first frequency parameter Ω1 with Lourdes’s[15] results
Fig.6First-eighth frequency parameters of cracked fixed beams with different crack depths
Fig.7First-third modal shapes of W of fixed beams with different c1
Fig.8First-third modal shapes of W of fixed beams with different c2
[1]
CHONDROS T G, DIMAROGONAS A D Identification of cracks in welded joints of complex structures[J]. Journal of Sound and Vibration, 1980, 69 (4): 531- 538
doi: 10.1016/0022-460X(80)90623-9
[2]
KHAJI N, SHAFIEI M, JALALPOUR M Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions[J]. International Journal of Mechanical Sciences, 2009, 51 (9/10): 667- 681
[3]
马一江, 陈国平 含多条裂纹梁的模态与振动疲劳寿命分析[J]. 振动、测试与诊断, 2017, 37 (2): 307- 313 MA Yi-jiang, CHEN Guo-ping Analysis of mode and vibration fatigue life of beam with multiple cracks[J]. Journal of Vibration, Measurement and Diagnosis, 2017, 37 (2): 307- 313
[4]
ZHAO X, ZHAO Y R, GAO X Z, et al Green’s functions for the forced vibrations of cracked Euler–Bernoulli beams[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 155- 175
doi: 10.1016/j.ymssp.2015.06.023
[5]
ZHAO X, HU Q J, CROSSLEY W, et al Analytical solutions for the coupled thermoelastic vibrations of the cracked Euler-Bernoulli beams by means of Green’s functions[J]. International Journal of Mechanical Sciences, 2017, 128-129: 37- 53
doi: 10.1016/j.ijmecsci.2017.04.009
[6]
KIM K H, KIM J H Effect of a crack on the dynamic stability of a free–free beam subjected to a follower force[J]. Journal of Sound and Vibration, 2000, 233 (1): 119- 135
doi: 10.1006/jsvi.1999.2793
[7]
杨鄂川, 李映辉, 赵翔, 等 含旋转运动效应裂纹梁横向振动特性的研究[J]. 应用力学学报, 2017, 34 (6): 1160- 1165 YANG E-chuan, LI Ying-hui, ZHAO Xiang, et al Investigations of transverse vibration characteristics of a rotating beam with a crack[J]. Chinese Journal of Applied Mechanics, 2017, 34 (6): 1160- 1165
[8]
马爱敏, 张治君, 李群 基于连续抗弯刚度模型的裂纹梁动力指纹损伤识别[J]. 应用力学学报, 2019, 36 (1): 14- 21 MA Ai-min, Zhang Zhi-jun, LI Qun Dynamic fingerprint damage identification method for cracked beams based on the continuous bending stiffness model[J]. Chinese Journal of Applied Mechanics, 2019, 36 (1): 14- 21
[9]
李兆军, 龙慧, 刘洋, 等 基于有限元位移模式的含裂纹梁结构动力学模型[J]. 中国机械工程, 2014, 25 (12): 1563- 1566 LI Zhao-jun, LONG Hui, LIU Yang, et al Dynamics equation of cracked beam based on finite element displacement mode[J]. China Mechanical Engineering, 2014, 25 (12): 1563- 1566
doi: 10.3969/j.issn.1004-132X.2014.12.001
[10]
郁杨天, 章青, 顾鑫 近场动力学与有限单元法的混合模型与隐式求解格式[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1324- 1330 YU Yang-tian, ZHANG Qing, GU Xin Hybrid model of peridynamics and finite element method under implicit schemes[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1324- 1330
[11]
胡霖远, 陈伟球, 张治成, 等 基于Zig-zag理论的波形钢腹板梁自由振动分析[J]. 浙江大学学报: 工学版, 2019, 53 (3): 503- 511 HU Lin-yuan, CHEN Wei-qiu, ZHANG Zhi-cheng, et al Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 503- 511
[12]
蒋杰, 周叮 两端有裂纹固支深梁的振动特性分析[J]. 建筑结构学报, 2018, 39 (Suppl.2): 183- 190 JIANG Jie, ZHOU Ding Analysis of vibration characteristics of clamped-clamped deep beams with cracks at ends[J]. Journal of Building Structures, 2018, 39 (Suppl.2): 183- 190
[13]
ZHOU D, CHEUNG Y K Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method[J]. International Journal of Solids and Structures, 2002, 39 (26): 6339- 6353
[14]
ZHOU D. Three-dimensional vibration analysis of structural elements using Chebyshev-Ritz method [M]. Beijing: Science Press, 2007.