Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2317-2324    DOI: 10.3785/j.issn.1008-973X.2019.12.008
Civil Engineering, Hydraulic Engineering     
Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation
Fei-bin YUAN1,2(),Wei-liang JIN1,2,Jiang-hong MAO2,*(),Jin-quan WANG3,Wei-jie FAN2,Jin XIA1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
3. Hangzhou Bay Cross-sea Bridge Development Co. Ltd, Ningbo 315317, China
Download: HTML     PDF(1406KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The bi-directional electro-migration (BIEM) method was used to repair the cracked concrete in the marine environment, in order to eliminate the chloride enriched in the vicinity of the crack and to prevent corrosion of the steel bars. The effect of BIEM under different crack widths was studied by measuring the concentration of rust inhibitor, mass fraction of chloride ion and the polarization curve of reinforcement. The chloride migration law was verified by the chloride migration characteristic test. Results that the corrosion potential of the steel can be restored to a high level after BIEM of the cracked concrete. When the crack width is small, the migration law of chloride ion in concrete cover is similar to that of the uncracked concrete. When the cracked width in concrete is greater than 0.3 mm, the chloride ion discharge efficiency at the crack increases with the increase of the crack width, while the discharge efficiency of chloride ion farther from the crack decreases.



Key wordsconcrete durability      crack width      bi-directional electro-migration (BIEM)      corrosion potential      chloride      corrosion inhibitor     
Received: 04 November 2018      Published: 17 December 2019
CLC:  TU 375  
Corresponding Authors: Jiang-hong MAO     E-mail: 21612162@zju.edu.cn;jhmao@nit.zju.edu.cn
Cite this article:

Fei-bin YUAN,Wei-liang JIN,Jiang-hong MAO,Jin-quan WANG,Wei-jie FAN,Jin XIA. Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2317-2324.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.008     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2317


基于双向电迁移的开裂混凝土除氯阻锈效果

采用双向电迁移(BIEM)方法对沿海环境下的开裂混凝土进行修复,以排除裂缝附近富集的氯离子,并对钢筋进行阻锈防护. 通过测定阻锈剂浓度、氯离子质量分数以及钢筋极化曲线,研究不同裂缝宽度下BIEM的作用效应,并通过氯离子迁移特征试验对氯离子的迁移规律加以验证. 试验结果表明:开裂混凝土双向电迁移后,钢筋腐蚀电位均能恢复至较高水平;当裂缝宽度较小时,混凝土保护层中氯离子的迁移规律与未裂混凝土相近;当裂缝宽度大于0.3 mm时,裂缝处的氯离子排出效率随裂缝宽度的增加有所提高,但离裂缝较远处的氯离子排出效率有所降低.


关键词: 混凝土耐久性,  裂缝宽度,  双向电迁移(BIEM),  腐蚀电位,  氯离子,  阻锈剂 
Fig.1 Schematic diagram of bi-directional electro-migration(BIEM)in cracked concrete
Fig.2 Schematic diagram of potential distribution in cracked concrete when electrified
编号 ρ /(kg·m?3)
水泥 砂子 石子 氯化钠
C30 206.7 406.7 633.3 1050 20.3
Tab.1 Mix proportion of C30 concrete specimen
Fig.3 Schematic diagram of BIEM specimen and chloride ion migration characteristic test specimen
Fig.4 Powder picking position along direction of specimen length and concrete cover
Fig.5 Polarization curve of steel bars in specimen groups with different crack widths before and after BIEM
试件组 Ecorr /mV $ E'_{\rm{corr}}$/mV
单值 均值 单值 均值
A-0 ?480 ?463 ?180 ?172
?456 ?191
?455 ?145
A-0.1 ?431 ?430 ?162 ?166
?391 ?157
?468 ?180
A-0.3 ?430 ?437 ?157 ?161
?448 ?179
?432 ?146
A-0.5 ?484 ?457 ?182 ?166
?436 ?155
?452 ?162
A-0.7 ?476 ?491 ?142 ?160
?504 ?156
?494 ?183
A-1.0 ?501 ?470 ?158 ?149
?414 ?143
?494 ?147
Tab.2 Corrosion potential before and after bi-directional electro-migration(BIEM)
Fig.6 Distribution of chloride concentration in concrete cover after BIEM
Fig.7 Schematic diagram for color boundary of each specimen
Fig.8 Distribution of color boundary of specimen with different crack widths
Fig.9 Location distribution of each specimen with fixed mass fraction value of chloride ion(0.03%)
Fig.10 Comparison of chloride ion mass fractions at different locations on surface layer of steel bar
Fig.11 Comparison of molar concentration of TETA in layer near steel bar
w/mm x0 /mm R w/mm x0 /mm R
0 0 28.36 0.1 0 26.54
20 27.16 20 26.24
60 28.80 60 25.24
0.3 0 33.05 0.5 0 31.97
20 27.99 20 27.24
60 28.60 60 28.93
0.7 0 36.49 1.0 0 45.13
20 20.72 20 15.13
60 17.70 60 10.8
Tab.3 Molar concentration ratio of TETA and chloride ion in layer near steel bar
[1]   陈肇元, 崔京浩, 朱金铨, 等 钢筋混凝土裂缝机理与控制措施[J]. 工程力学, 2006, 23 (a01): 86- 107
CHEN Zhao-yuan, CUI Jing-hao, ZHU Jin-quan, et al Analysis and control of cracking in reinforced concrete[J]. Engineering Mechanics, 2006, 23 (a01): 86- 107
[2]   DJERBI A, BONNET S, KHELIDJ A, et al Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research, 2008, 38 (6): 877- 883
doi: 10.1016/j.cemconres.2007.10.007
[3]   SAHMARAN M Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar[J]. Journal of Materials Science, 2007, 42 (22): 9131- 9136
doi: 10.1007/s10853-007-1932-z
[4]   金祖权, 侯保荣, 赵铁军, 等 收缩裂缝对混凝土氯离子渗透及碳化的影响[J]. 土木建筑与环境工程, 2011, 33 (1): 7- 11
JIN Zu-quan, HOU Bao-rong, ZHAO Tie-jun, et al Influence of shrinkage cracks on chloride penetration and crabonation of concrete[J]. Journal of Civil Architectural and Environmental Engineering, 2011, 33 (1): 7- 11
doi: 10.11835/j.issn.1674-4764.2011.01.003
[5]   延永东, 金伟良, 王海龙 饱和状态下开裂混凝土内的氯离子输运[J]. 浙江大学学报: 工学版, 2011, 45 (12): 2127- 2133
YAN Yong-dong, JIN Wei-liang, WANG Hai-long Chloride ingression in cracked concrete under saturated state[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (12): 2127- 2133
[6]   POLDER R B Electrochemical chloride removal from concrete prisms containing chloride penetrated from sea water[J]. Construction and Building Materials, 1996, 10 (1): 83- 88
doi: 10.1016/0950-0618(95)00062-3
[7]   ORELLAN J C, ESCADEILLAS G, ARLIGUIE G Electrochemical chloride extraction: efficiency and side effects[J]. Cement and Concrete Research, 2004, 34 (2): 227- 234
doi: 10.1016/j.cemconres.2003.07.001
[8]   SAWADA S, PAGE C L, PAGE M M Electrochemical injection of organic corrosion inhibitors into concrete[J]. Corrosion Science, 2005, 47 (8): 2063- 2078
doi: 10.1016/j.corsci.2004.10.001
[9]   TANG J, HAN S, HUANG C, et al Investigation on inhibitor electromigration anticorrosion technology for reinforced concrete structure[J]. Advanced Materials Research, 2009, 79-82: 1025- 1028
doi: 10.4028/www.scientific.net/AMR.79-82.1025
[10]   XU C, JIN W L, HUANG N, et al Bidirectional electromigration of a corrosion inhibitor in chloride contaminated concrete[J]. Magazine of Concrete Research, 2015, 68 (9): 1- 12
[11]   许晨, 金伟良, 章思颖 氯盐侵蚀混凝土结构延寿技术初探Ⅱ: 混凝土中6种胺类有机物电迁移与阻锈性能[J]. 建筑材料学报, 2014, 17 (4): 572- 578
XU Chen, JIN Wei-liang, ZHANG Si-ying Preliminary study on service life extension of concrete structures under chloride environment: effectiveness of six amine-based inhibitors for steel in chloride-contaminated simulated concrete pore solutions[J]. Journal of Building Materials, 2014, 17 (4): 572- 578
doi: 10.3969/j.issn.1007-9629.2014.04.003
[12]   金伟良, 黄楠, 许晨, 等 双向电渗对钢筋混凝土修复效果的试验研究: 保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报: 工学版, 2014, 48 (9): 1586- 1594
JIN Wei-liang, HUANG Nan, XU Chen, et al Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete: concentration changes of inhibitor, chloride ions and total alkalinity[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (9): 1586- 1594
[13]   毛江鸿, 金伟良, 李志远, 等 氯盐侵蚀钢筋混凝土桥梁耐久性提升及寿命预测[J]. 中国公路学报, 2016, 29 (1): 61- 66
MAO Jiang-hong, JIN Wei-liang, LI Zhi-yuan, et al Durability improvement and service life prediction of reinforced concrete bridge under chloride attack[J]. China Journal of Highway and Transport, 2016, 29 (1): 61- 66
doi: 10.3969/j.issn.1001-7372.2016.01.008
[14]   RYU J S, OTSUKI N Crack closure of reinforced concrete by electrodeposition technique[J]. Cement and Concrete Research, 2002, 32 (1): 159- 164
doi: 10.1016/S0008-8846(01)00650-0
[15]   NISHIDA T , OTSUKI N , SAITO A . Development of improved electrodeposition method for repair of reinforced concrete structures [C] // 4th International Conference on the Durability of Concrete Structures. West Lafayette: ICDCS, 2014: 393−402.
[16]   姚武, 郑晓芳 电沉积法修复钢筋混凝土裂缝的试验研究[J]. 同济大学学报: 自然科学版, 2006, 34 (11): 1441- 1444
YAO Wu, ZHENG Xiao-fang Experimental study on crack repair of reinforced concrete by electrodeposition technique[J]. Journal of Tongji University: Natural Science, 2006, 34 (11): 1441- 1444
[17]   宋显辉, 张华, 李卓球 碳纤维增强混凝土裂纹钝化的有限元模拟与实验研究[J]. 华中科技大学学报: 城市科学版, 2003, 20 (3): 26- 29
SONG Xian-hui, ZHANG Hua, LI Zhuo-qiu Study of crack blunting in carbon fibre reinforced concrete and finite element simulation[J]. Journal of Huazhong University of Science and Technology: Urban Science Edition, 2003, 20 (3): 26- 29
[18]   金伟良, 郭柱, 许晨 电化学修复后钢筋极化状态分析[J]. 中国腐蚀与防护学报, 2013, 33 (1): 75- 80
JIN Wei-liang, GUO Zhu, XU Chen Polarization analysis of reinforced after electrochemical repair[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33 (1): 75- 80
[19]   ASsTM C876-91, Standard test method for half-cell potentials of uncoated reinforcing steel in concrete [S]. New York: ANSI, 1999.
[1] Xin SONG,Wei-jie FAN,Jiang-hong MAO,Wei-liang JIN. Dynamic control effect of chloride in concrete based on multi-level electromigration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 511-518.
[2] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[3] Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.
[4] Jiang-xing LONG,Wei-liang JIN,Jun ZHANG,Jiang-hong MAO,Lei CUI. Experimental study on fatigue properties of steel bars after electrochemical repair[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 64-72.
[5] LIU Xin, LU Zhou-dao, CAI Zi-wei, LI Ling-zhi. Post-fire shear performance of bolted side-plated reinforced concrete beams[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 853-863.
[6] SONG Ying-bin, XU Jin-xia, JIANG Lin-hua, TAN Qi-ping, MEI You-jing. Anti-corrosion performance of NO3-/NO2- intercalation of MgAl-LDHs in simulated concrete pore solution[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2397-2405.
[7] DAI Li-zhao, WANG Lei, ZHANG Jian-ren, YANG Ri-hua. Filling of strand corrosion products and crack width prediction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 97-105.
[8] XIE Gui ming, WANG Zhi yang, BAO Yong zhong. Particle formation process of vinylidene chloride suspension copolymerizations in presence of blowing agent[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 378-383.
[9] ZHANG Shuai yi,HUANG Ya ji,WANG Xin ye,YAN Yu peng,LIU Chang qi,CHEN Bo. Effect of chlorides on plumbum dynamic volatilization during simulated municipal solid waste incineration[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 485-490.
[10] XU Chen, JIN Wei-liang, HUANG Nan, WU Hang-tong, MAO Jiang-hong, XIA Jin.
Experiment on repair effect of bidirectional electromigration rehabilitation on reinforced concrete:changing rule of protective layer strength
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1128-1138.
[11] JIN Wei-liang, HUANG Nan, XU Chen, MAO Jiang-hong. Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete—Concentration changes of inhibitor, chloride ions and total alkalinity[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1586-1594.
[12] JIN Wei-liang, WANG Yi. Experimental study on mechanics behaviors of reinforced concrete beams under simultaneous chloride attacks and sustained load[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 221-227.
[13] GAO Jiu-li, LIU Jing-qing, ZHANG Tu-qiao, LI Cong, JIANG Wei. Effects of chloride and humic acid on iron release in water distribution system[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1321-1328.
[14] ZHANG Si-ying, JIN Wei-liang, XU Chen. Effectiveness of an amine-based inhibitor—guanidine for
steel in chloride-contaminated concrete
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 449-455.
[15] WANG Peng, LIN Dong-qiang, YAO Shan-jing. Preparation of porous cellulose beads with ionic liquid mixed solvent[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2160-2164.