Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (2): 379-387    DOI: 10.3785/j.issn.1008-973X.2022.02.019
    
Traffic characteristics and safety analysis of expressway off-ramp junction
Yong-heng CHEN1(),Chang-jian WU1,Qiao-wen BAI1,*(),Shuai XIONG2,Wan-ning LI1,Hao-nan LI1
1. College of Transportation, Jilin University, Changchun 130022, China
2. North China Municipal Engineering Design and Research Institute Limited Company, Tianjin 300074, China
Download: HTML     PDF(1248KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to explore the driving behavior and safety characteristics of the junction between the off-ramp and the downstream intersection, combined with the measured track data of lane changing vehicles, the track characteristics and the lane changing position characteristics of the ramp junction vehicles were analyzed. Using the traffic conflict technology, the risk of vehicle lane changing was analyzed with post encroach time (PET) as the index, and the ordered probability model was established to identify the factors affecting the severity of the conflict. Results show that the Lorentz distribution model can be used to fit the vehicle lane change position. The lane change type and the number of lane crossing have significant effects on the vehicle lane change position, and the lane change position is closer to the beginning of the junction when the lane change is forced and the lane crossing is multi-lane. Compared with the ordinary junction section, the driving risk of the ramp junction section is higher, and the main conflict type is crossover conflict. The saturation of junction section, lane change position, cross conflict, forced lane change and illegal lane change are significantly related to the severity of conflict. The stability of the headways in the off-ramp junction section is poor during the green phase, and the lane changing interference of the queuing vehicle in the interweaving section is serious.



Key wordsramp junction section      lane changing characteristic      safety analysis      traffic conflict      statistical analysis     
Received: 02 April 2021      Published: 03 March 2022
CLC:  U 491  
Corresponding Authors: Qiao-wen BAI     E-mail: cyz@jlu.edu.cn;victorbty@foxmail.com
Cite this article:

Yong-heng CHEN,Chang-jian WU,Qiao-wen BAI,Shuai XIONG,Wan-ning LI,Hao-nan LI. Traffic characteristics and safety analysis of expressway off-ramp junction. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 379-387.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.02.019     OR     https://www.zjujournals.com/eng/Y2022/V56/I2/379


快速路出口匝道衔接段交通特性与安全分析

为了探究快速路出口匝道与下游交叉口衔接段的驾驶行为与安全特性,结合实测换道车辆轨迹数据,分析匝道衔接段车辆轨迹特性和换道位置特性. 利用交通冲突技术,以后侵入时间(PET)为指标对车辆换道风险展开分析,建立有序概率模型识别冲突严重程度的影响因素. 结果显示,用Lorentz分布模型拟合车辆换道位置效果较好,换道类型与跨越车道数对车辆换道位置有显著影响,在强制换道与跨越多车道时换道位置更靠近衔接段始端;相较于普通衔接段,匝道衔接段行车风险更高,主要冲突类型为交叉冲突;衔接段饱和度、换道位置、交叉冲突、强制换道以及违章换道与冲突严重程度显著相关. 匝道衔接段释放车辆的车头时距稳定性差,交织区排队车辆的释放受换道干扰严重.


关键词: 匝道衔接段,  换道特性,  安全分析,  交通冲突,  统计分析 
Fig.1 Geometrical parameters of survey sites
Fig.2 Vehicle trajectories information collection
Fig.3 Trajectories of typical lane changing traffic
模型 AIC
ORJ-1 ORJ-2
Lorentz模型 ?157.176 ?165.624
LogNormal模型 ?126.336 ?127.645
Gauss模型 ?146.535 ?159.765
Tab.1 Fitting results of lane changing location distribution model
Fig.4 Probability distributions of lane changing positions
Fig.5 Cumulative frequency distribution of lane changing positions within different lane changing types
地点 换道类型 $ n $ $ \overline x $/m $\sigma/{\rm{m}}$ P
ORJ-1 强制换道 358 22.81 14.39 0.004
ORJ-1 自由换道 254 31.21 17.31 0.004
ORJ-2 强制换道 378 28.21 12.06 0.001
ORJ-2 自由换道 247 34.21 17.31 0.001
ORJ-3 强制换道 271 18.27 11.80 0.001
ORJ-3 自由换道 230 25.75 14.79 0.001
ORJ-4 强制换道 249 22.64 11.40 0.001
ORJ-4 自由换道 210 31.08 14.37 0.001
Tab.2 Statistical analysis of lane changing positions within different lane changing types
Fig.6 Cumulative frequency distribution of lane changing positions within different number of lane crossings
地点 跨越车道数 $ n $ $ \overline x $/m $\sigma/{\rm{m}}$ P
ORJ-1 1 79 43.57 13.88 0.001
ORJ-1 2 113 34.49 17.54 1.000
ORJ-1 3 176 28.88 11.03 0.028
ORJ-2 1 87 41.32 11.98 0.001
ORJ-2 2 122 32.14 19.58 1.000
ORJ-2 3 210 25.45 14.54 0.010
ORJ-3 1 110 31.21 17.32 0.001
ORJ-3 2 145 26.32 15.20 1.000
ORJ-3 3 178 17.52 11.52 0.001
ORJ-4 1 95 27.02 15.88 0.104
ORJ-4 2 98 25.74 18.95 1.000
ORJ-4 3 145 19.10 14.31 0.001
Tab.3 Statistical analysis of lane changing positions within different number of lane crossings
Fig.7 PET histograms and cumulative distribution curve of ramp junction segment
冲突类型 匝道衔接段 普通衔接段 P
$\bar x_ {\rm{PET} }$ ${\rm{pr}}$/% $P_{\rm{tc} }$ $\bar x_{ {\rm{PET}} }$ ${\rm{pr}}$/% $P_{\rm{tc} }$
分流冲突 1.85 34 0.17 2.14 52 0.09 <0.001
交叉冲突 1.51 36 0.24 1.97 2 0.00 <0.001
合流冲突 1.83 30 0.15 1.89 46 0.08 0.041
总计 1.73 100 0.53 2.00 100 0.17 0.012
Tab.4 Comparison of traffic conflicts in two junction sections
变量 系数 P
衔接段饱和度 0.362 0.008
换道位置 0.341 <0.001
交叉冲突 0.512 0.021
强制换道 0.557 <0.001
违章换道 0.397 <0.001
${\chi }_1 $ 1.587 ?
${\chi }_2 $ 3.224 ?
Tab.5 Calibration of ordered Probit model parameters
变量 ΔP
潜在冲突 轻微冲突 严重冲突
衔接段饱和度 ?0.057 ?0.011 0.068
换道位置 ?0.052 0.014 0.038
交叉冲突 ?0.221 ?0.108 0.329
强制换道 ?0.301 0.147 0.154
违章换道 ?0.164 0.031 0.133
Tab.6 Marginal effects of ordered Probit model
Fig.8 Box chart of time headway distribution
Fig.9 Order chart of time headway
[1]   ZHAO J, LIU Y Integrated signal optimization and non-traditional lane assignment for urban freeway off-ramp congestion mitigation[J]. Transportation Research Part C Emerging Technologies, 2016, 73: 219- 238
doi: 10.1016/j.trc.2016.11.003
[2]   中华人民共和国住房和城乡建设部. 中华人民共和国行业标准. 城市快速路设计规程: CJJ 129-2009 [S]. 北京: 中国建筑工业出版社, 2009.
[3]   肖忠斌, 王炜, 李文权, 等 城市高架路下匝道地面联接段最小长度模型[J]. 东南大学学报: 自然科学版, 2007, 37 (6): 1071- 1076
XIAO Zhong-bin, WANG Wei, LI Wen-quan, et al Minimum length requirement model for expressway off-ramp joint[J]. Journal of Southeast University: Natural Science Edition, 2007, 37 (6): 1071- 1076
[4]   CASSIDY M J, ANANI S B, HAIGWOOD J M Study of freeway traffic near an off-ramp[J]. Transportation Research Part A, 2000, 36 (6): 563- 572
[5]   YANG X, LU Y, CHANG G L Dynamic signal priority control strategy to mitigate off-ramp queue spillback to freeway mainline segment[J]. Transportation Research Record Journal of the Transportation Research Board, 2014, 2438: 1- 11
doi: 10.3141/2438-01
[6]   ZHAO J, MA W, XU H Increasing the capacity of the intersection downstream of the freeway off-ramp using presignals[J]. Computer-aided Civil and Infrastructure Engineering, 2017, 32 (8): 674- 690
doi: 10.1111/mice.12281
[7]   张楠, 杨晓光 快速路出口衔接过饱和交叉口信号优化方法[J]. 交通运输系统工程与信息, 2018, 18 (6): 164- 171
ZHANG Nan, YANG Xiao-guang Optimize signal timings for oversaturated intersections connected with urban freeway off-ramp[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (6): 164- 171
[8]   LIM K, KIM J H, SHIN E, et al A signal control model integrating arterial intersections and freeway off-ramps[J]. KSCE Journal of Civil Engineering, 2011, 15 (2): 385- 394
doi: 10.1007/s12205-011-0880-y
[9]   杨晓芳, 韩印, 付强. 城市快速路出口匝道与衔接交叉口整合控制模型 [J]. 交通运输工程学报, 2009, 9(2): 110-115.
YANG Xiao-fang, HAN Yin, FU Qiang. Integrated control model of urban expressway off-ramp and correlative intersection [J]. Journal of Traffic and Transportation Engineering, 2009, 9(2): 110-115.
[10]   CHEN X, QI Y, LI D, et al Dual right-turn lanes in mitigating weaving conflicts at frontage road intersections in proximity to off-ramps[J]. Transportation Planning and Technology, 2014, 37 (3): 307- 319
doi: 10.1080/03081060.2014.897126
[11]   ZHANG L, CHEN C, ZHANG J, et al. Modeling lane-changing behavior in freeway off-ramp areas from the Shanghai naturalistic driving study [EB/OL]. [2020-10-20]. https://doi.org/10.1155/2018/8645709.
[12]   BEINUM A V, FA R H, WEGMAN F, et al Driving behaviour at motorway ramps and weaving segments based on empirical trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 426- 441
doi: 10.1016/j.trc.2018.05.018
[13]   XU T, HAO Y, CUI S, et al Crash risk assessment of off-ramps, based on the gaussian mixture model using video trajectories[J]. Sustainability, 2020, 12 (8): 3076
doi: 10.3390/su12083076
[14]   ZHANG L, WANG S, CHEN C, et al Modeling lane-change risk in urban expressway off-ramp area based on naturalistic driving data[J]. Journal of Testing and Evaluation, 2019, 48 (3): 1975- 1989
[15]   陈峻, 於昊, 王炜, 等 城市高架道路下匝道地面联结段交通分析与评价[J]. 中国公路学报, 2000, 13 (3): 69- 72
CHEN Jun, YU Hao, WANG Wei, et al Analysis and evaluation of traffic flow in the urban elevated road with its off-ramp joint’s weaving section[J]. China Journal of Highway and Transport, 2000, 13 (3): 69- 72
doi: 10.3321/j.issn:1001-7372.2000.03.018
[16]   饶劲超. 城市快速路出口匝道区域建模与控制方法研究 [D]. 杭州: 浙江大学, 2014.
RAO Jin-chao. Model and control method for the area of the freeway of off-ramp [D]. Hangzhou: Zhejiang University, 2014.
[17]   张翔. 快速路出口匝道与衔接交叉口协调优化控制方法研究 [D]. 南京: 东南大学, 2018.
ZHANG Xiang. Research on coordinated optimization control method of urban off-ramp and adjacent intersection [D]. Nanjing: Southeast University, 2018.
[18]   张旭旻, 李文权 下匝道衔接道路最小长度计算模型[J]. 交通运输系统工程与信息, 2008, 8 (1): 144- 148
ZHANG Xu-min, LI Wen-quan A minimum length model for joint section of expressway off-ramp[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8 (1): 144- 148
doi: 10.3969/j.issn.1009-6744.2008.01.025
[19]   LIU Z, HE J, ZHANG C, et al. Optimal off-ramp terminal locating strategy based on traffic safety and efficiency [EB/OL]. [2020-10-20]. https://doi.org/10.1080/19427867.2020.1839717.
[20]   韩泽祥. 城市高架快速路出口匝道与地面道路衔接技术研究 [D]. 西安: 长安大学, 2019.
HAN Ze-xiang. Study on the connection technology of urban elevated expressway exit ramp and ground road [D]. Xi’an: Chang’an University, 2019.
[21]   江晟, 王殿海, 曲昭伟, 等 交叉口机动车运动轨迹特征提取与标定[J]. 西南交通大学学报, 2012, 47 (5): 784- 789
JIANG Sheng, WANG Dian-hai, QU Zhao-wei, et al Extraction and calibration of trajectory characteristics of vehicles at intersections[J]. Journal of Southwest Jiaotong University, 2012, 47 (5): 784- 789
doi: 10.3969/j.issn.0258-2724.2012.05.009
[22]   朱顺应, 蒋若曦, 王红, 等 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33 (2): 15- 33
ZHU Shun-ying, JIANG Ruo-xi, WANG Hong, et al Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33 (2): 15- 33
[1] LI Xian-sheng, MENG Fan-song, ZHENG Xue-lian, REN Yuan-yuan, YAN Jia-hui. Influence of traffic conflict types on driver's physiological characteristics[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1720-1726.
[2] . Wind-resistant safety analysis of light-weight steel portal frame structures[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2141-2145.
[3] SHU Ting-Ting, WANG Wei-Biao, YOU Ai-Ju. Analysis of overtopping probability of Xiasha seawall on Qiantang river[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1543-1548.