1. Engineering Training Center, Dalian University of Technology, Dalian 116023, China 2. Marine Engineering College, Dalian Maritime University, Dalian 116026, China
SiC particle reinforced aluminum matrix (SiCp/Al) composites contain irregular silicon carbide particles, causing a large number of non ideal cross-sections in the material, which makes it difficult to remove the surface of the material effectively. Simulation analysis and experimental verification of surface removal of SiCp/Al composite with variable cutting depth were carried out, in order to reveal the mechanism of material removal. Results show that the interface failure has an important impact on surface formation and there are removal processes such as aluminum alloy matrix tearing, interface separating; silicon carbide particles exposing, crack propagation, breaking and falling off, pressing into aluminum alloy matrix, debris sliding against the material surface, etc. The large area of the silicon carbide particles crushing and falling off, causes pit defect and the material is subjected to secondary cutting under the tool push, so that the surface of the aluminum matrix forms non-continuous cracks. In SiCp/Al composites, the actual cutting depth is less than the nominal cutting depth due to the existence of aluminum alloy matrix. Research in this paper can provide some references for the study of removal mechanism and processing of SiCp/Al composites.
Hong-zhe ZHANG,Xu ZHANG,Xiao-chun ZHU,Yong-jie BAO. Surface removal mechanism study of SiCp/Al composites based on single-point cutting test. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 388-397.
Tab.1Johnson-Cook constitutive model and failure parameters of 2A12 Al alloy[14-15]
材料 参数
E/ GPa
μ
τ/ (10?6 K?1)
ρ/ (103 kg·m?3)
$\lambda $/ (W·m?1·K?1)
c/ (J·kg?1·K?1)
2A12 铝合金
71.7
0.33
26.6
2.77
175
921
碳化硅
420.0
0.14
4.9
3.13
81
427
Tab.2Physical and mechanical property parameters of 2A12 Al alloy and SiC[15-16]
Fig.1Mesh generation and boundary conditions of micro scale finite element model for SiCp/Al composites
Fig.2Experimental device and method of single-point cutting test in accordance with actual grinding parameters
h/μm
r/mm
v/(m?s?1)
Δt/s
vf/(mm?min?1)
n/(r?min?1)
20
162
5.26
0.10~0.15
100
310
Tab.3Parameters of single-point cutting test in accordance with actual range of grinding parameters
Fig.3Surface morphology of 2A12 aluminum alloy, 65% SiCp/2A12 Al composite and SiC ceramic after pretreatment
Fig.4Simulation of aluminum alloy matrix removal process in SiCp/Al composites
Fig.5Simulation of formation process of pit defects in SiCp/Al composites caused by SiC particle breakage
Fig.6Simulation of deformation process of SiC particles removal in SiCp/Al composites
Fig.7Simulation of secondary cutting process of SiC particles in SiCp/Al composites
Fig.8Longitudinal section outline curves of three materials and micro morphology of SiCp/Al composites with different cutting depth values
[1]
武高辉 金属基复合材料发展的挑战与机遇[J]. 复合材料学报, 2014, (5): 1228- 1237 WU Gao-hui Challenges and opportunities for the development of metal matrix composites[J]. Journal of Composite Materials, 2014, (5): 1228- 1237
[2]
DONG G J, ZHANG H J, ZHOU M, et al Experimental investigation on ultrasonic vibration-assisted turning of SiCp/Al composites[J]. Advanced Manufacturing Processes, 2013, 28 (9): 999- 1002
[3]
KADIVAR M A, AKBARI J, YOUSEFI R, et al Investigating the effects of vibration method on ultrasonic assisted drilling of Al/SiCp metal matrix composites[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30 (3): 344- 350
doi: 10.1016/j.rcim.2013.10.001
[4]
ZHAO X, GONG Y D, CAI M, et al Numerical and experimental analysis of material removal and surface defect mechanism in scratch tests of high volume fraction SiCp/Al composites[J]. Materials, 2020, 13 (3): 796
doi: 10.3390/ma13030796
[5]
YIN G Q, WANG D, CHENG J Experimental investigation on micro-grinding of SiCp/Al metal matrix composites[J]. International Journal of Advanced Manufacturing Technology, 2019, 102 (9–12): 3503- 3517
doi: 10.1007/s00170-019-03375-0
[6]
WANG Y F, LIAO W H, YANG K, et al Investigation on cutting mechanism of SiCp/Al composites in precision turning[J]. International Journal of Advanced Manufacturing Technology, 2019, 100 (1–4): 963- 972
doi: 10.1007/s00170-018-2650-1
[7]
WANG Y F, LIAO W H, YANG K, et al Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs[J]. International Journal of Advanced Manufacturing Technology, 2019, 100 (5–8): 1393- 1404
doi: 10.1007/s00170-018-2769-0
[8]
LIU J W, CHENG K, DING H, et al Simulation study of the influence of cutting speed and tool-particle interaction location on surface formation mechanism in micromachining SiCp/Al composites[J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2018, 232 (11): 2044- 2056
doi: 10.1177/0954406217713521
[9]
DU J G, MING W Y, CAO Y, et al Particle removal mechanism of high volume fraction SiCp/Al composites by single diamond grit tool[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2019, 32 (2): 324- 331
[10]
ZHA H T, FENG P F, ZHANG J, et al. Material removal mechanism in rotary ultrasonic machining of high-volume fraction SiCp/Al composites[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5–8): 2099–2109.
[11]
吴红兵, 贾志欣, 刘刚, 等 航空钛合金高速切削有限元建模[J]. 浙江大学学报:工学版, 2010, 44 (5): 982- 987 WU Hong-bing, JIA Zhi-xin, LIU Gang, et al Finite element modeling for high speed cutting of aeronautical titanium alloy[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (5): 982- 987
[12]
杨勇, 柯映林, 董辉跃 钛合金切削绝热剪切带形成过程的有限元分析[J]. 浙江大学学报:工学版, 2008, 42 (3): 534- 538 YANG Yong, KE Ying-lin, DONG Hui-yue Finite element analysis of adiabatic shear band formation in titanium alloy cutting[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (3): 534- 538
[13]
LIU J, BAI Y, XU C Evaluation of ductile fracture models in finite element simulation of metal cutting processes[J]. Journal of Manufacturing Science and Engineering, 2014, 136 (1): 011010
doi: 10.1115/1.4025625
[14]
李春雷. 2A12铝合金本构关系实验研究[D]. 黑龙江: 哈尔滨工业大学, 2006. LI Chun-lei. Experimental study on constitutive relationship of 2A12 aluminum alloy [D]. Heilongjiang: Harbin Institute of Technology, 2006
ZHOU L, HUANG S T, WANG D, et al Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools[J]. International Journal of Advanced Manufacturing Technology, 2011, 52 (5–8): 619- 626
doi: 10.1007/s00170-010-2776-2
[17]
郑伟, 刘岭, 张群, 等 SiCp/Al复合材料超声磨削表面缺陷形成机理仿真研究[J]. 固体火箭技术, 2019, 42 (6): 793- 800 ZHENG Wei, LIU Ling, ZHANG Qun, et al Simulation study on the formation mechanism of surface defects in ultrasonic grinding of SiCp/Al composite materials[J]. Solid Rocket Technology, 2019, 42 (6): 793- 800
[18]
WANG T, XIE L J, WANG X B Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite[J]. International Journal of Advanced Manufacturing Technology, 2015, 79 (5–8): 1185- 1194
doi: 10.1007/s00170-015-6876-x
[19]
XIANG D H, SHI Z L, FENG H R, et al Finite element analysis of ultrasonic assisted milling of SiCp/Al composites[J]. International Journal of Advanced Manufacturing Technology, 2019, 105 (7/8): 3477- 3488
[20]
DANDEKAR C R, SHIN Y C Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (4): 35- 63
[21]
CHANDRA N, LI H, SHET C, et al Some issues in the application of cohesive zone models for metal-ceramic interfaces[J]. International Journal of Solids and Structures, 2002, 39 (10): 2827- 2855
doi: 10.1016/S0020-7683(02)00149-X
[22]
DANDEKAR C R, SHIN Y C Multiphase finite element modeling of machining unidirectional composites. prediction of debonding and fiber damage[J]. Journal of Manufacturing Science and Engineering Transactions of the ASME, 2008, 130 (5): 051016
doi: 10.1115/1.2976146
[23]
ZHANG H, RAMESH K C Effects of interfacial de-bonding on the rate-dependent response of metal matrix composites[J]. Acta Materialia, 2005, 53 (17): 4687- 4700
doi: 10.1016/j.actamat.2005.07.004
[24]
OZEL T The influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools Manufacture, 2006, 46 (5): 518- 530
doi: 10.1016/j.ijmachtools.2005.07.001