Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 843-850    DOI: 10.3785/j.issn.1008-973X.2020.05.001
Civil Engineering, Traffic Engineering     
Bond degradation between corroded stainless steel bar and concrete
Hai-long WANG1(),Yuan-jian WU1,Jia-yan LING2,Xiao-yan SUN1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. The Architectural Design and Research Institute of Zhejiang University, Hangzhou 310028, China
Download: HTML     PDF(1618KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The direct pullout tests under different corrosion rates were conducted to evaluate the bond performance between the corroded stainless steel bar and the concrete. The influences of corrosion rate and surface crack width on the bond degradation were analyzed, and then predictive formulas of bond strength between the stainless steel bar and the concrete were given respectively based on the corrosion rate and the surface crack width. The differences of bond properties between ordinary and stainless steel reinforced concretes were compared. Test results show that the bond strength between corroded stainless steel bar and concrete increases firstly and then decreases as the increase of corrosion rate, which is similar to that of the ordinary reinforced concrete, however the critical corrosion rate of stainless steel affecting the bond strength is higher than that of ordinary reinforcement. Pitting corrosion has strong randomness, which leads to the discrete relationship between the corrosion crack width and corrosion rate. Compared with the model based on the corrosion rate, the predictive model based on the surface crack width has a better agreement with the test results, and is of better practicability. The degradation amount of bond strength of stainless steel reinforced concrete is smaller than that of ordinary reinforced concrete at a same corrosion degree. The existing bond degradation model of ordinary reinforced concrete can be used to descript the stainless steel reinforced concrete directly and has a certain safety stock.



Key wordsstainless steel reinforced concrete      bond strength      degradation      corrosion rate      crack width     
Received: 25 April 2019      Published: 05 May 2020
CLC:  TU 375  
Corresponding Authors: Xiao-yan SUN     E-mail: hlwang@zju.edu.cn;selina@zju.edu.cn
Cite this article:

Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.001     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/843


锈蚀不锈钢筋与混凝土黏结性能退化

通过不同锈蚀率下不锈钢筋混凝土试件的中心拉拔试验,分析锈蚀率、锈胀裂缝宽度对不锈钢筋/混凝土黏结性能退化的影响规律,分别基于质量锈蚀率和表面裂缝宽度建立不锈钢筋与混凝土黏结强度的预测公式,并与普通钢筋混凝土黏结性能进行对比分析. 研究结果表明:类似普通钢筋混凝土黏结退化规律,锈蚀不锈钢筋黏结强度随锈蚀率增大呈先增后减趋势,但拐点锈蚀率较普通钢筋更大;不锈钢局部坑蚀具有较强的随机性,使得锈胀裂缝宽度与锈蚀率的关系较为离散,与基于锈蚀率的黏结退化模型相比,基于表面锈胀裂缝宽度的模型可以更好地预测不锈钢筋与混凝土黏结强度的退化规律,工程实用性更强;在相同锈蚀程度下,不锈钢筋黏结强度退化程度较普通钢筋小,现有的普通钢筋黏结退化模型可以用于不锈钢黏结强度的预测,具有一定的安全保证.


关键词: 不锈钢筋混凝土,  黏结强度,  退化,  锈蚀率,  裂缝宽度 
Fig.1 Dimensions of pullout specimen
材料 ρB/(kg?m?3 材料 ρB/(kg?m?3
220.0 1 033.5
水泥 611.6 7.7
486.4 减水剂 2.2
Tab.1 Mix proportions of concrete
元素 wB/% 元素 wB/%
C 0.02 Cr 22.83
Mn 1.36 Ni 6.15
S ? Mo 3.21
Si 0.14 ? ?
Tab.2 Chemical compositions of novel 2205 stainless steel
Fig.2 Loading set-up of pullout test
Fig.3 Typical failure modes of pullout specimens
Fig.4 Details of splitting failure surface of pullout specimens
试件编号 ηt/% ηa/% ω/mm Sm/mm τ/MPa κp1 κp2
自由端 加载端
0-1 0 0 0 0.284 0.953 10.868 1.054 0.996
1-1 1 1.73 0.17 0.421 1.115 12.066 1.170 1.105
3-1 3 3.04 0.05 0.278 1.139 11.460 1.111 1.221
4-1 4 3.98 0.28 0.315 1.446 14.634 1.419 1.169
5-1 5 4.95 0.33 0.342 1.696 8.555 0.829 0.940
7-1 7 5.82 0.19 0.392 1.003 9.219 0.894 0.866
9-1 9 7.47 0.21 0.259 0.813 8.902 0.863 0.731
12-1 12 11.33 0.07 0.454 2.331 13.289 1.288 0.473
Tab.3 Partial results of pullout test for corroded stainless steel bar
Fig.5 Bond stress-slip curve of specimens with different corrosion rates
Fig.6 Relationship between coefficient of bond strength drop and corrosion rate
Fig.7 Comparison of degradation model of bond strength based on corrosion rate
Fig.8 Surface of stainless steel bars with different corrosion rates
Fig.9 Relationship between bond strength degradation coefficient and surface crack width
Fig.10 Relationship between surface crack width and corrosion rate
Fig.11 Comparison of crack in different corrosion forms
Fig.12 Comparison of degradation model of bond strength based on surface crack width
[1]   ALSULAIMANI G J, KALEEMULLAH M, BASUNBUL I A, et al Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members[J]. ACI Structural Journal, 1990, 87 (2): 220- 231
[2]   张国学, 吴苗苗 不锈钢钢筋混凝土的应用及发展[J]. 佛山科学技术学院学报: 自然科学版, 2006, 24 (2): 10- 13
ZHANG Guo-xue, WU Miao-miao Application and development of stainless steel rebars for reinforced concrete structures[J]. Journal of Foshan University: Natural Science Edition, 2006, 24 (2): 10- 13
[3]   赵峰. 不锈钢钢筋混凝土梁抗震性能试验研究[D]. 广州: 广东工业大学, 2009.
ZHAO Feng. Experimental research on seismic behavior of stainless steel reinforced concrete beams [D]. Guangzhou: Guangdong University of Technology, 2009.
[4]   张劲全. 不锈钢筋混凝土结构研究[M]. 北京: 人民交通出版社, 2015: 65-73.
[5]   凌佳燕. 新型不锈钢筋耐蚀性及不锈钢筋混凝土构件力学性能研究[D]. 杭州: 浙江大学, 2018.
LING Jia-yan. Study on corrosion resistance of new stainless steel bars and mechanical properties of stainless steel reinforced concrete members [D]. Hangzhou: Zhejiang University, 2018.
[6]   于凤荣. 锈蚀损伤后不锈钢钢筋混凝土构件力学性能研究[D]. 杭州: 浙江大学, 2017.
YU Feng-rong. Study on mechanical properties of stainless steel reinforced concrete members after corrosion damage [D]. Hangzhou: Zhejiang University, 2017.
[7]   KEARSLEY E P, JOYCE A Effect of corrosion products on bond strength and flexural behaviour of reinforced concrete slabs[J]. Journal of the South African Institution of Civil Engineers, 2014, 56 (2): 21- 29
[8]   LAN C, KIM J H J, YI S T Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars[J]. Cement and Concrete Composites, 2008, 30 (7): 603- 611
doi: 10.1016/j.cemconcomp.2008.03.006
[9]   张伟平, 张誉 锈胀开裂后钢筋混凝土黏结滑移本构关系研究[J]. 土木工程学报, 2001, 34 (5): 40- 44
ZHANG Wei-ping, ZHANG Yu Study on bond-slip constitutive relation of reinforced concrete after rust expansion cracking[J]. China Civil Engineering Journal, 2001, 34 (5): 40- 44
doi: 10.3321/j.issn:1000-131X.2001.05.008
[10]   林红威, 赵羽习 变形钢筋与混凝土黏结性能研究综述[J]. 建筑结构学报, 2019, 40 (1): 11- 27
LIN Hong-wei, ZHAO Yu-xi A review of bond behavior between deformed reinforcement bar and concrete[J]. Journal of Architectural Structure, 2019, 40 (1): 11- 27
[11]   GB/T50082-2009. 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中华人民共和国住房和城乡建设部, 2009.
[12]   袁迎曙, 余索, 贾福萍 锈蚀钢筋混凝土的黏结性能退化的试验研究[J]. 工业建筑, 1999, 29 (11): 47- 50
YUAN Ying-shu, YU Suo, JIA Fu-ping Experimental study on degradation of bond property of corroded reinforced concrete[J]. Industrial Construction, 1999, 29 (11): 47- 50
doi: 10.3321/j.issn:1000-8993.1999.11.011
[13]   ALMUSALLAM A A, ALGAHTANI A S, AZIZ A R, et al Effect of reinforcement corrosion on bond strength[J]. Construction and Building Materials, 1996, 10 (2): 123- 129
doi: 10.1016/0950-0618(95)00077-1
[14]   CABRERA J G Deterioration of concrete due to reinforcement steel corrosion[J]. Cement and Concrete Composites, 1996, 18 (1): 47- 59
doi: 10.1016/0958-9465(95)00043-7
[15]   AMLEH L. Bond deterioration of reinforcing steel in concrete due to corrosion [D]. Montreal: McGill University, 2000.
[16]   CHUNG L, CHO S H, KIM J, et al Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars[J]. Engineering Structures, 2004, 26 (8): 1013- 1026
doi: 10.1016/j.engstruct.2004.01.008
[17]   夏晋. 锈蚀钢筋混凝土构件力学性能研究[D]. 杭州: 浙江大学, 2010.
XIA Jin. Study on mechanical properties of corroded reinforced concrete members [D]. Hangzhou: Zhejiang University, 2010.
[18]   赵羽习, 金伟良 锈蚀钢筋与混凝土黏结性能的试验研究[J]. 浙江大学学报: 工学版, 2002, 36 (4): 8- 12
ZHAO Yu-xi, JIN Wei-liang Experimental study on bonding properties of corroded steel bar and concrete[J]. Journal of Zhejiang University: Engineering Science, 2002, 36 (4): 8- 12
[19]   徐育才. 钢筋锈蚀拉拔试验及其黏结性能研究[D]. 武汉: 华中科技大学, 2006.
XU Yu-cai. Corrosion drawing test of reinforcement bar and its bonding property [D]. Wuhan: Huazhong University of Science and Technology, 2006.
[20]   梁岩, 罗小勇, 肖小琼, 等 锈蚀钢筋混凝土黏结滑移性能试验研究[J]. 工业建筑, 2012, 42 (10): 95- 100
LIANG Yan, LUO Xiao-yong, XIAO Xiao-qiong, et al Experimental study on bond-slip behavior of corroded reinforced concrete[J]. Industrial Construction, 2012, 42 (10): 95- 100
[21]   BHARGAVA K, GHOSH A K, MORI Y, et al Suggested empirical models for corrosion-Induced bond degradation in reinforced concrete[J]. Journal of Structural Engineering, 2008, 134 (2): 221- 230
doi: 10.1061/(ASCE)0733-9445(2008)134:2(221)
[22]   LEE H S, NOGUCHI T, TOMOSAWA F Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion[J]. Cement and Concrete Research, 2002, 32 (8): 1313- 1318
[23]   KIVELL A R L. Effects of bond deterioration due to corrosion on seismic performance of reinforced concrete structures [D]. Christchurch: University of Canterbury, 2012.
[24]   林红威. 单调及重复荷载作用下锈蚀钢筋混凝土黏结性能试验研究[D]. 杭州: 浙江大学, 2017.
LIN Hong-wei. Experimental study on bond behavior of corroded reinforced concrete under monotonic and repeated loads [D]. Hangzhou: Zhejiang University, 2017.
[25]   曲福来, 闫磊源, 刘桂荣, 等 往复荷载下不均匀锈蚀钢筋与混凝土黏结性能试验研究[J]. 工业建筑, 2016, 46 (4): 110- 113
QU Fu-lai, YAN Lei-yuan, LIU Gui-rong, et al Experimental study on bond behavior of uneven corroded reinforcement bar and concrete under reciprocating load[J]. Industrial Construction, 2016, 46 (4): 110- 113
[26]   吴锋, 张章, 龚景海 基于锈胀裂缝的锈蚀梁钢筋锈蚀率计算[J]. 建筑结构学报, 2013, 34 (10): 144- 150
WU Feng, ZHANG Zhang, GONG Jing-hai Corrosion rate calculation of corroded beams based on corrosion expansion cracks[J]. Journal of Architectural Structure, 2013, 34 (10): 144- 150
[27]   徐港, 卫军, 刘德富 非均匀锈蚀变形钢筋黏结性能试验研究[J]. 工业建筑, 2009, 39 (1): 101- 104
XU Gang, WEI Jun, LIU De-fu Experimental study on bonding behavior of non-uniform corroded deformed reinforcement bars[J]. Industrial Construction, 2009, 39 (1): 101- 104
[28]   莫青城. 锈蚀钢筋混凝土黏结滑移性能研究及其超声检测[D]. 哈尔滨: 哈尔滨工业大学, 2016.
MO Qing-cheng. Study on bond-slip behavior of corroded reinforced concrete and its ultrasound detection [D]. Harbin: Harbin Institute of Technology, 2016.
[29]   LAW D W, TANG D, MOLYNEAUX T K C, et al Impact of crack width on bond: confined and unconfined rebar[J]. Materials and Structures, 2011, 44 (7): 1287- 1296
doi: 10.1617/s11527-010-9700-y
[30]   FISCHER C. Experimental investigations on the effect of corrosion on bond of deformed bars [C]// 8th fibs PhD Symposium in Civil Engineering. Lyngby: Technical University of Denmark, 2010: 1-6.
[31]   何世钦. 氯离子环境下钢筋混凝土构件耐久性能试验研究[D]. 大连: 大连理工大学, 2004.
HE Shi-qin. Experimental study on durability of reinforced concrete members under chloride ion environment [D]. Dalian: Dalian University of Technology, 2004.
[32]   张伟平, 张誉. 锈后钢筋混凝土黏结构滑移性能的试验研究[C]//中国土木工程学会第九届年会. 杭州: 中国土木工程学会, 2000: 361-366.
ZHANG Wei-ping, ZHANG Yu. Experimental study on the slippage behavior of reinforced concrete cohesive structure after rust [C]// The 9th Annual Meeting of the Chinese Society of Civil Engineering. Hangzhou: China Civil Engineering Society, 2000: 361-366.
[1] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[2] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[3] Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.
[4] Qian CHEN,Wu CAI,Jie CHEN,Hu-biao ZHAO,Chang-xin LI,Yun-feng HE. Degradation effects of different chemical oxidants on polycyclic aromatic hydrocarbons in soil[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2437-2444.
[5] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2309-2316.
[6] Fei-bin YUAN,Wei-liang JIN,Jiang-hong MAO,Jin-quan WANG,Wei-jie FAN,Jin XIA. Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2317-2324.
[7] Xing-bo HAN,Yong-xu XIA,Yong-dong WANG,Fei YE. Probabilistic degradation model for tunnel lining flexural capacity[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2175-2184.
[8] YANG Hai-yan, YE Gui-hong, CHEN Yi-hua, LI Yi. Degradation of sulfamethoxazole in reclaimed water by UV/NaClO advanced oxidation process[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 186-192.
[9] XU Qiang, ZHENG Shan-suo, LI Xiao-sheng. Experimental study on seismic behavior of steel frame joints considering degradation of offshore environment[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2314-2321.
[10] DAI Li-zhao, WANG Lei, ZHANG Jian-ren, YANG Ri-hua. Filling of strand corrosion products and crack width prediction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 97-105.
[11] GONG Jun-hui, CHEN Yi-xuan, WANG Zhi-rong, JIANG Jun-cheng, LI Jing, ZHOU Yang. Mechanism of non-charring polymer thermal degradation involving two types of heat flux absorption modes[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 784-791.
[12] GONG Jun hui, CHEN Yi xuan, LI Jin, ZHOU Yang. Numerical simulation of pyrolysis of PMMA involving surface and in-depth absorption[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1879-1888.
[13] WANG Zi-long, LI Cong, REN Qing-liang, XU-Qing, LIU Jia-han,MAO Xin-wei. Effects of different factors on degradation of BPA in water distribution system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1180-1187.
[14] WU Zu-liang, XIE De-yuan, LU Hao, YAO Shui-liang, GAO Xiang. Degradation properties and mechanism of naphthalene from exhaust gas using dielectric barrier discharge[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1120-1126.
[15] HU An-feng, ZHANG Guang-jian, JIA Yu-shuai, ZHANG Xiao-dong. Application of degradation stiffness model in analysis of cumulative lateral displacement of monopile foundation[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 721-726.