Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Degradation properties and mechanism of naphthalene from exhaust gas using dielectric barrier discharge
WU Zu-liang1, XIE De-yuan1, LU Hao1, YAO Shui-liang1, GAO Xiang2
1. College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; 2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1759KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Effects of the initial volume fraction of naphthalene, residence time and exhaust gas components on naphthalene degradation process were analyzed. The naphthalene degradation mechanism was explored through byproducts analysis. Degradation efficiency decreases with the increasing initial volume fraction, while the energy utilization efficiency improves. When the residence time is prolonged, the degradation efficiency trends to be stable, while the COx selection rate enhances step by step. The degradation efficiency can reach above 70% as the volume fraction of oxygen gas from exhausted gas is 3%, but the COx selection rate is only 30%. The degradation efficiency is relatively stable when the volume fraction of oxygen gas is 3%-20%, while the COx selection rate gradually increases and goes to 77% at 20% volume fraction of oxygen gas. According to the degradation byproducts, nitrogen gas excited state plays an important role during the initial degradation of naphthalene. And O radical can promote the naphthalene degradation through some direct collision reactions. However, complete degradation of naphthalene depends on O and OH radicals.



Published: 01 April 2015
CLC:  X 511  
Cite this article:

WU Zu-liang, XIE De-yuan, LU Hao, YAO Shui-liang, GAO Xiang. Degradation properties and mechanism of naphthalene from exhaust gas using dielectric barrier discharge. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1120-1126.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.06.022     OR     http://www.zjujournals.com/eng/Y2014/V48/I6/1120


介质阻挡放电废气中萘的降解特性和机理

针对大气中日益严重的多环芳烃(PAHS)污染问题,采用介质阻挡放电对模拟废气中萘的降解特性和机理进行了研究,分析萘的初始体积分数、停留时间和废气组分对萘降解效率和降解产物的影响,并通过对降解副产物的分析,探索其降解机理.研究结果表明:萘初始体积分数的增加引起了萘降解效率下降,但提高了降解的能量利用率;随着反应停留时间的延长,萘的降解效率趋于平稳,COx选择率逐步提高;当废气中氧气的体积分数为3%时,70%以上的萘能被降解,但COx选择率却只有30%;当氧气体积分数为3%~20%时,萘的降解效率相对稳定,但COx选择率却稳步提高;当氧气体积分数为20%时,COx选择率达到77%.根据降解副产物的分析,氮气激发态在萘的初始降解过程中起到重要的作用,而且O自由基能够通过与萘分子的直接碰撞反应促进萘的降解,而萘的深度降解则依靠O、OH等自由基的氧化.

[1] ZHANG Y X, TAO S, SHEN H Z, et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2009, 106(50): 21063-21067.
[2] ZHANG Y X, TAO S. Global atmospheric emission inventory of polycyclic aromatic hydrocrbons (PAHs) for 2004[J]. Atmospheric Environment, 2009, 43(4): 812-819.
[3] ZHU L Z, LU H, CHEN S G, et al. Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China[J]. Journal of Hazardous Materials, 2009, 162(2/3):1165-1170.
[4] YANG K, ZHU L Z, XING B S. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J]. Environmental Science & Technology, 2006, 40(6): 1855-1861.
[5] SHEMER H, LINDEN K G. Photolysis, oxidation and subsequent toxicity of a mixture of polycyclic aromatic hydrocarbons in natural waters[J]. Journal of Photochemistry and Photobiology A, 2007, 187: 186-195.
[6] BEKBOLET M, CMAR Z, KILIC M, et al. Photocatalytic oxidation of dinitronaphthalenes: theory and experiment[J]. Chemosphere, 2009, 75(8): 1008-1014.
[7] ZENG Y, HONG P K A, WAVREK D A. Integrated chemical-biological treatment of benzo[a]pyrene[J]. Environmental Science & Technology, 2000, 34: 854-862.
[8] EL-ALAWI Y. Measurement of short- and long-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria Ecotoxicol[J]. Environmental Safety, 2002, 51: 12-21.
[9] KIM H H. Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects[J]. Plasma Processes and Polymers, 2004, 1: 91-110.
[10] DURME J V, DEWULF J, LEYS C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 324-333.
[11] CHEN H L, LEE H M, CHEN S H, et al. Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications[J]. Environmental Science & Technology, 2009, 43(7): 2216-2227.
[12] YE Z, ZHANG Y, LI P, et al. Feasibility of destruction of gaseous benzene with dielectric barrier discharge[J]. Journal of Hazardous Material, 2008, 90(1/2): 356-364.
[13] BLIN-SIMIAND N, JORAND F, MAGNE L,et al. Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2008, 28(4): 429-466.
[14] KRAWEZYK K, ULEJCZYK B, SONG H K, et al. Plasma-catalytic reactor for decomposition of chlorinated hydrocarbons[J]. Plasma Chemistry and Plasma Processing, 2009, 29(1): 27-41.
[15] MOK Y S, DEMIDYUK V,WHITEHEAD J C. Decomposition of hydrofluorocarbons in a dielectric-packed plasma reactor[J]. Journal of Physical Chemistry A, 2008, 112(29): 6586-6591.
[16] OSTAPCZUK A, HAKODA T, SHIMADA A, et al. Naphthalene and acenaphthene decomposition by electron beam generated plasma application[J]. Plasma Chemistry and Plasma Processing, 2009, 28(4): 483-494.
[17] YU L, LI X, TU X, et al. Decomposition of naphthalene by dc gliding arc gas discharge[J]. Journal of Physical Chemistry A, 2010, 114(1): 360-368.
[18] ABDELAZIZ A A, SETO T, ABDEL-SALAM M, et al. Performance of a surface dielectric barrier discharge based reactor for destruction of naphthalene in an air stream[J]. Journal of Physics D: Applied Physics, 2012, 45(11): 110.
[19] HARLING A M, GLOVER D J, WHITEHEAD J C, et al. The role of ozone in the plasma-catalytic destruction of environmental pollutants[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 157-161.
[20] YU L, LI X D, TU X, et al. Decomposition of Naphthalene by dc Gliding Arc Gas Discharge[J]. Journal of Physical Chemistry A, 2010, 114: 360-368.
[21] SIMIAND N B, JORAND F, MAGNE L, et al. Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2008, 28(4): 429-466.

[1] CHEN Wen cong, HOU Yi wen, WU Jian, WANG Li hong. Characteristics of PM2.5 and VOCs emission from chemical fiber industry[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 145-152.
[2] LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao. Evaluation on operation state and stability for denitrification of ultra low emission[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2303-2311.
[3] ZHU Yan qun, YANG Ye, HUANG Jian peng, LIN Fa wei, MA Qiang, XU Chao qun, WANG Zhi hua, CEN Ke fa. Removal of NOx by ozone oxidation from flue gas of 60000 m3/h carbon black drying furnace of rubber plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1865-1870.
[4] ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1516-1520.
[5] QIU Shan, CHEN Cong, DENG Feng xia, JI Ya wan, DING Xiao, MA Fang. Rhodamine B wastewater degradation by graphite graphite electro Fenton system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 704-713.
[6] ZHOU Bin, ZHOU Hao, WANG Jian yang, CEN Ke fa. characteristic of Shenhua coal ash blending with saw dust ash in O2/CO2 atmosphere[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 468-476.
[7] ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang. Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 312-319.
[8] SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan. Experimental study on catalytic co pyrolysis of corn stalk and polypropylene[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 333-340.
[9] BAO Qiang, ZHOU Hao, LIU Jian cheng, ZHU Guo dong, SHI Wei, CEN Ke fa. Promotional effect and alkali resistant performance of novel CeO2-V2O5/TiO2-SiO2 catalyst[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1855-1862.
[10] FANG Meng-xiang, JIANG Wen-min, WANG Tao, XIANG Qun-yang, LU Jia-hui, ZHOU Xu-ping. Simulation and optimization of novel CO2 direct steam stripping process based on the experimental results[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1565-1571.
[11] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 564-570.
[12] YAO Shui-liang, ZHAO Yi-fan, ZHANG Yuan, NI Jie-cao, WU Zu-liang. Treatment of particle material from diesel exhaust using multilayer dielectric barrier discharge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 157-161.
[13] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 0-1.
[14] WANG Lei, WANG Zhong-hua, NING Ping, JIANG Ming, QIN Yang-song. Phosphorus-fixation and sulfur-fixation by using Ca(OH)2/clays sorbent[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(5): 874-882.
[15] WANG Ming-xi, FANG Meng-xiang, WANG Zhen, PAN Yi-li, LUO Zhong-yang. CO2 absorption and desorption by phase transition lipophilic amine solvents[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 662-668.