Mechanical and Energy Engineering |
|
|
|
|
Evaluation on operation state and stability for denitrification of ultra low emission |
LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao |
1. Zhejiang Tiandi Environmental Protection Technology Co. Ltd,Hangzhou 310003, China;
2. Zhejiang Provincial Energy Group Co. Ltd, Hangzhou 310007, China;
3. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The evaluation system for the performance of denitrification device was established by taking the 1 000 MW coal-fired unit after ultra low emission transformation as an example. The operation, reliability and stability of denitrification device was evaluated in detail. Results show that the qualified rates of selective catalytic reduction (SCR) inlet NOx concentration, SCR outlet NOx concentration, denitrification efficiency, ammonia escape and pressure loss are 90.45%, 92.34%, 78.98%, 92.34% and 100.00%, respectively, while the corresponding evaluation standards are 300 mg/m3、50 mg/m3、85%、3×10-6 and 600 Pa, respectively. Substandard working conditions occurs at the operation state of variable and low load. The main reasons are that the response rate of spray ammonia signal is too slow, that the oxygen content in the furnace is difficult to control and that the SCR inlet temperature is too also low. The average NOx concentration at SCR outlet after reformation decreases significantly, even lower than 30 mg/m3. The NOx concentration at the outlet of the chimney is stable and reliable with the qualified rate of 98.74%, which is even higher than the designed value.
|
Published: 08 December 2016
|
|
|
Cite this article:
LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao. Evaluation on operation state and stability for denitrification of ultra low emission. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2303-2311.
URL:
http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.12.009 OR http://www.zjujournals.com/eng/Y2016/V50/I12/2303
|
超低排放脱硝运行状态及稳定性评估
以超低排放改造后的某1 000 MW燃煤机组为例,建立该机组脱硝装置的性能评估体系,对脱硝装置的运行状态、可靠性和稳定性进行评估.得到的结论如下:按照该机组选择性催化还原(SCR)入口NOx浓度、SCR出口NOx浓度、脱硝效率、氨逃逸和压力损失分别为300 mg/m3、50 mg/m3、85%、3×10-6 和600 Pa的评估标准,对应的达标率分别为90.45%、92.34%、78.98%、98.32%和100.00%|不达标状态一般出现在机组变负荷和低负荷运行状态下,主要是喷氨量信号的响应速度过慢、炉膛内氧量难以控制和SCR入口温度较低等原因所致|超低排放改造后的机组SCR出口NOx平均浓度明显降低,小于30 mg/m3,改造效果显著|机组总排口NOx排放浓度稳定可靠,达标率为98.74%,高于超低排放设计目标.
|
|
[1] ZHEN C, JING K J, OSCAR F. Characteristics and health impacts of particulate matter pollution in China [J]. Atmospheric Environment, 2013, 65(3): 186-194.
[2] LAI H K, TSANG H, THACH T Q, et al. Health impact assessment of exposure to fine particulate matter based on satellite and meteorological information [J]. Environmental Science: Processes and Impacts, 2014,16(2): 239-246.
[3] MOMOE K, LIANG D, TSUYOSHI F. Regional disparity and costeffective SO2 pollution control in China: A case study in 5 megacities [J]. Energy Policy, 2013, 61(7): 1322-1331.
[4] 国家统计局能源统计司. 中国能源统计年鉴2013[R]. 北京: 中国统计出版社, 2013.
[5] 中国电力企业联合会. 2013年中国电力行业年度发展报告[R].北京: 中国市场出版社, 2013.
[6] 国家统计局.中国环境统计年鉴(2014)[M]. 北京: 中国统计出版社, 2014: 54.
[7] 朱法华,王临清. 煤电超低排放的技术经济与环境效益分析[J]. 环境保护,2014,42(21): 28-33.
ZHU Fahua, WANG Linqing. Analysis on technologyeconomy and environment benefit of ultralow emission from coalfired power units [J]. Environmental Protection, 2014, 42(21): 28-33.
[8] 国家发改委. 关于印发《煤电节能减排升级与改造行动计划(20142020年)》的通知 [EB/OL]. (2014-09-12) [2015-12-17]. http:∥bgt.ndrc.gov.cn/zcfb/201409/t20140919_626242.html
[9] 张东辉,庄烨,朱润儒,等. 燃煤烟气污染物超低排放技术及经济分析[J]. 电力建设,2015,36(5): 125-130.
ZHANG Donghui, ZHUANG Ye, ZHU Runqian, et al. Ultralow air pollutant control technologies for coalfired flue gas and its economic analysis [J]. Electric Power Construction, 2015, 36(5): 125-130.
[10] ZHENG C H, XU C R, ZHANG Y X, et al. Simultaneous absorption of NOx and SO2 in oxidantenhanced limestone slurry [J]. Environmental Progress and Sustainable Energy, 2013, 33(4): 11711179.
[11] ZHENG C H, XU C R, ZHANG Y X, et al. Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system [J]. Applied Energy, 2014, 129: 187-194.
[12] 周俊虎,刘广义,刘海峰,等. 神华煤燃烧再燃中NOx生成与还原试验研究[J],浙江大学学报: 工学版,2007, 41(3): 499-503.
ZHOU Junhu, LIU Guangyi, LIU Haifeng, et al. Experimental study on NOx formation and reduction by Shenhua coal during combustion and reburning [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(3): 499-503.
[13] 梁志宏. 基于我国新大气污染排放标准下的燃煤锅炉高效低NOx协调优化系统研究及工程应用[J]. 中国电机工程学报,2014, 34(增1): 122-129.
LIANG Zhihong. Study and engineering application of high efficiency and low NOx coordinated optimization control system for coalfired boilers based on new air pollutant emission standard [J]. Proceedings of the Chinese Society for Electrical Engineering, 2014,34(Suppl. 1): 122-129.
[14] 徐钢,袁星,杨勇平,等. 火电机组烟气脱硫系统的节能优化运行[J]. 中国电机工程学报,2012,32: 22-29.
XU Gang, YUAN Xin, YANG Yongping, et al. Optimization operation of flue gas desulfurization systems in power plants for energy conservation [J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32: 22-29.
[15] 蒋敏华,黄斌. 燃煤发电技术发展展望[J]. 中国电机工程学报,2012,32(29): 18.
JIANG Minghua, HUANG Bin. Prospects on coalfired power generation technology development [J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32(29): 18.
[16] DAOOD S S, JAVED M T, GIBBS B M, et al. NOx control in coal combustion by combining biomass cofiring, oxygen enrichment and SNCR [J]. Fuel, 2013, 105(1): 283-292.
[17] HU Z H. Experimental study on combustion and NOx emission characteristic of 1000 MW ultrasupercritical coalfired boiler [J]. Journal of Mechanical Engineering, 2010, 46(4): 105110.
[18] WU X C, ZHAO H F, ZHANG Y X, et al. Measurement of slurry droplets in coalfired flue gas after WFGD [J]. Environmental Geochemistry and Health, 2014, 37(5): 115.
[19] KANG Y S, KIM S S, HONG S C. Combined process for removal of SO2, NOx, and particulates to be applied to a 1.6MWe pulverized coal boiler [J]. Journal of Industrial and Engineering Chemistry, 2015, 30: 197-203.
[20] LIU J X. Experimental study on desulfurization enhanced by additive in limestonegypsum FGD process [J]. Applied Mechanics and Materials, 2014, 675:422-425.
[21] ZHENG M, CASS G R, SCHAUER J J, et al. Source apportionment of PM2.5 in the southeastern United States using solventextractable organic compounds as tracers [J]. Environmental Science and Technology, 2002, 36(11): 2361-2371.
[22] 毛剑宏,宋浩,吴卫红,等. 电站锅炉SCR反应器脱硝系统导流板的设计与优化[J]. 浙江大学学报:工学版,2011, 45(6): 1124-1129.
MAO Jianhong, SONG Hao, WU Weihong, et al. Design and optimization of splitters in SCR system for coalfired boiler [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(6): 1124-1129.
[23] 燃烧理论与污染控制[M]. 北京: 机械工业出版社, 2004: 406-408.
[24] JIN M, YU G X, WANG F, et al. Simultaneous absorption of SO2 and NO using sodium chlorate/urea absorbent in a rotating packed bed [J]. Advanced Materials Research, 2014, 908: 187-190.
[25] POPE III C A, EZZATI M, DOCKERY D W. Fineparticulate air pollution and life expectancy in the United States [J]. New England Journal of Medicine, 2009, 360(4): 376-386.
[26] BRAUER M, AMANN M, BURNETT R T, et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution [J]. Environmental Science and Technology, 2012, 46(2): 652-660. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|