Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Simulation and optimization of novel CO2 direct steam stripping process based on the experimental results
FANG Meng-xiang1, JIANG Wen-min1, WANG Tao1, XIANG Qun-yang1, LU Jia-hui2, ZHOU Xu-ping1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China; 2. EDF China R&D Center, Beijing 100005, China
Download:   PDF(1192KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The technology of CO2 direct steam stripping is considered as a promising way to solve the high energy penalty problem in the chemical post combustion CO2 capture process, which based on the absorber of MEA. A packed column was set up to investigate the impacts of steam flow rate, steam superheated temperature, preheat temperature of the rich solvent, column pressure and the packing material via experimental and modeling approaches. The results show that the steam flow rate and the temperature of rich solvent impact significantly on the CO2 regeneration rate, while the influence of the steam temperature superheated temperature is relatively small. The influence of column pressure to the CO2 regeneration rate varies with the steam flow rate changing. And the CO2 regeneration rate increases with the column pressure increasing under different stream flow rate. The CY packing material shows the best CO2 regeneration performance among the five kinds of tested packing material. The novel process can reduce the regeneration energy to 3 MJ per kilogram CO2 or even lower in the optimization condition.



Published: 01 August 2015
CLC:  TQ 028.1  
  X 511  
Cite this article:

FANG Meng-xiang, JIANG Wen-min, WANG Tao, XIANG Qun-yang, LU Jia-hui, ZHOU Xu-ping. Simulation and optimization of novel CO2 direct steam stripping process based on the experimental results. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1565-1571.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.08.023     OR     http://www.zjujournals.com/eng/Y2015/V49/I8/1565


基于实验的直接蒸气再生CO2系统模拟及优化

针对以乙醇胺(MEA)吸收剂为代表的传统化学吸收工艺具有再生能耗高的缺点,探究将过热蒸气直接通入再生塔与吸收剂接触再生CO2的工艺流程.通过实验和模拟分析该工艺过程中吹扫蒸气流量、蒸气过热度、富液温度、再生塔压力、填料种类对于CO2再生效果的影响.结果显示,吹扫蒸气流量,富液温度对CO2再生效果影响较为明显,而吹扫蒸气过热度对CO2再生效果影响不大.再生塔压力对再生CO2量的影响在不同的吹扫蒸气流量下呈现不同的趋势.在5种填料种类中,CY填料对CO2再生效果最好.该工艺可以有效降低热再生能耗计算过程中气化潜热部分能耗,在优化的操作条件下可以将CO2再生能耗降至每千克CO2 3 MJ 以下.

[1] EIA. International energy outlook [R]. Washington D C: Energy Information administration, 2011.
[2] KANNICHE M, GROS-BONNIVARD R., JAUD P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture [J]. Applied Thermal. Engineering. 2010, 30(1): 53-62.
[3] NOORMAN S, GALLICCI F, ANNALAND M. Experimental investigation of a CuO/Al2O3 oxygen carrier for chemical-looping combustion[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 9720-9728.
[4] HUANG B, LIU L, XU S et al. The current situation and development of CO2 strapping an treatment technique in coal-fired power station [J]. Electrical Equipment, 2008, 9(5); 3-6.
[5] CIFEMO J P, DIPIETRO P, TARKA T. An economic scoping study for CO2 capture using aqueous ammonia [R]. Washington D C: US Department of Energy (DOE), 2005.
[6] TOBIESEN A, MEJDELL T, SVENDSEN H F. A comparative study of experimental and modelling performance results from the CASTOR Esbjerg pilot plant[C]∥8th International conference on greenhouse gas control technologies, Trondheim, Norway: [S.l.]2006.
[7] CHAPEL D,MARIZ C,ERNEST J.Recovery of CO2 from flue gases: commercial trends[C]∥ Canadian society of chemical engineers annual meeting. Saskatoon, Canada: [S. l.]1999: 4-6.
[8] 刘彦丰, 朱路平, 闫维平. CO2捕集技术在燃煤电厂中应用的经济性评估[J]. 中国电机工程学报,2010,31(32): 59-64.
LIU Yan-feng, ZHU Lu-ping,YAN Wen-ping, Economic assessment for the CO2 capture technologies applied in the coal-firing power plant [J].Proceedings of the CSEE, 2010, 31(32): 59-64.
[9] 朱德臣. 燃煤烟气CO2化学吸收技术研究[D].杭州:浙江大学,2011: 102-120.
ZHU De-chen. Chemical absorption method study for CO2 capture from Coal-fired Flue gas [D]. Hangzhou: Zhejiang University 2011: 102-120.
[10] 汪明喜,方梦祥,汪桢. 相变吸收剂对CO2吸收与再生特性[J].浙江大学学报,工学版,2013, 47(4): 662-668.
WANG Ming-xi, FANG Meng-xiang, WANG Zhen. CO2 absorption and desorption by phase transition lipophilic amine solvents [J]. Journal of Zhejiang University: Engineering Science, 2013, 47(4): 662-668.
[11] WEI.C, PUXTY.G, FERON P. Amino acid salts for CO2 capture at flue gas temperatures [J]. Chemical Engineering Science, 2014, 107: 218-226.
[12] MOULLEC.Y.LE, KANNICHE M. Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2011, 5 (4) 727-740.
[13] 潘一力.混合吸收剂膜减压再生特性的试验研究[J].中国电机工程学报,2013(05): 61-67.
PAN Yi-li. Experimental study on regeneration characteristics of CO2-rich blended amine solution using membrane vacuum regeneration technology[J]. Proceedings of the CSEE, 2013(05): 61-67.
[14] ANUSHA K., Carbon dioxide capture by chemical absorption: a solvent comparison study [D]. Massachusetts: Massachusetts Institute of Technology, 2010.
[15] 张超昱. 氨水富液溶液的CO2膜减压再生试验研究[J]. 能源工程,2012(03): 37-42.
ZHANG Chao-yu. Experimental study of CO2 regeneration from ammonia rich solution by membrane vacuum regeneration [J]. Energy Engineering, 2012(03): 37-42.
[16] ZAHRA MRMA. MEA Research report polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas [J]. Angewandte Chemie, 2012, 124(30).
[17] UGOCHUKWU E. ARONU, SHAHLA G, et al Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40-120℃ and model representation using theextended UNIQUAC framework [J]. Chemical Engineering Science, 2011, 66: 6393-6406.
[18] LEITES I L, SAMA D A, LIOR N. The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology process [J]. Energy, 2003, 28: 55-97.
[19] LI X,WANG S,CHEN C. Experimental study of energy requirement of CO2 desorption from rich solvent [J].Energy Procedia, 2013,37: 1836-1843.

[1] ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang. Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 312-319.
[2] WANG Ming-xi, FANG Meng-xiang, WANG Zhen, PAN Yi-li, LUO Zhong-yang. CO2 absorption and desorption by phase transition lipophilic amine solvents[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 662-668.
[3] SHEN Wei, SUN Rong-ze, TANG Ke, JIN Tao. Small-scale air separation process utilizing cold energy  from LNG satellite station[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(3): 549-553.