Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Power abd Energy Engineering     
Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture
ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
Download:   PDF(871KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
Screening test were conducted for CO2 absorption among six potassium amino acid solutions by wetted wall column. Potassium L prolinate, potassium sarcosinate and potassium glycinate were picked out for further studies on mass transfer characteristics. The effects of concentration, CO2 loading, temperature and total pressure on mass transfer properties were analyzed. The liquid phase mass transfer coefficient increases with the increase of temperature and concentration of amino acid salt solutions. The Arrhenius plots between the rate constant and temperature were obtained. Liquid phase mass transfer coefficient decreases when CO2 loading rises. The elevated total pressure shows positive effect on CO2 absorption. The gas phase mass transfer coefficient decreases with the elevated total pressure. The gas phase mass transfer coefficient decreases by 86% from 0.1 MPa to 0.3 MPa.


Published: 01 February 2016
CLC:  TQ 028.1  
  X 511  
Cite this article:

ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang. Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 312-319.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.02.016     OR     http://www.zjujournals.com/eng/Y2016/V50/I2/312


氨基酸盐吸收二氧化碳过程的传质特性

为了研究氨基酸盐吸收剂吸收CO2过程的传质特性,选取6种氨基酸盐吸收剂在湿壁塔反应器上进行CO2吸收试验,筛选出L 脯氨酸钾、甘氨酸钾、肌氨酸钾为吸收剂类型,研究不同吸收剂浓度、CO2负荷、吸收温度、湿壁塔内、总压力对吸收剂吸收CO2过程传质特性的影响.结果表明,吸收剂浓度和温度的升高,能够有效提高吸收剂液相传质系数,得到该3种氨基酸盐吸收剂吸收CO2的反应速率常数与温度的关系式;随着吸收剂负荷的升高,液相传质系数将逐渐降低;而湿壁塔内总压力的升高能够促进CO2的吸收.气相传质系数随着湿壁塔内总压力的升高逐渐降低,总压力为0.3 MPa时气相传质系数较0.1 MPa降低86%.

[1] MA’MUM S, SVENDSEN H F, HOFF K A, et al. Selection of new absorbents for carbon dioxide [J]. Energy Conversion and Management, 2007, 48(1): 251-258.
[2]郭东方,王金意,GABRIEL D,郜时旺.CO2捕集溶剂氨基酸的反应活性与机制探讨[J].中国电机工程学报,2003, 33(32): 29-33.
GUO Dong fang, WANG Jin yi, GABRIEL D, et al. Reactivity and mechanism study of CO2 with amino acids as carbon capture solvents[J]. Proceedings of the CSEE, 2003, 33(32): 29-33.
[3] ZHANG Feng, FANG Cheng gang, WU You ting, et al. Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA [J]. Chemical Engineering Journal, 2010, 160(2): 691-697.
[4] JING Guo hua, ZHOU Lan juan, ZHOU Zuo ming. Characterization and kinetics of carbon dioxide absorption into aqueous tetramethylammonium glycinate solution [J]. Chemical Engineering Journal, 2012, 181:85-92.
[5] KUMAR P S, HOGENDOOM J A, FERON P H M, et al. Equilibrium solubility of CO2 in aqueous potassium taurate solutions: part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids [J]. Industrial & Engineering Chemistry Research, 2003, 42(12): 2832-2840.
[6] JOCKENHOVE T, SCHNEIDER R. Towards commercial application of a second generation post combustion capture technology—Pilot plant validation of the Siemens capture process and implementation of afirst demonstration case [J]. Energy Procedia, 2011, 4: 1451-1458.
[7] PAUL S, THOMSEN K. Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline [J]. International Journal of Greenhouse Gas Control, 2012, 8: 169-179.
[8] KUMAR P S, HOGENDOOM J A, VERSTEEG G F. Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine [J]. Aiche Journal, 2003,49(1): 203-213.
[9] PORTUGAL A F. Characterization of potassium glycinate for carbon dioxide absorption purposes[J]. Chemical Engineering Science, 2007. 62(23): 6534-6547.
[10] ARONU U E. Kinetics of carbon dioxide absorption into aqueous amino acid salt: potassium salt of sarcosine solution [J]. Industrial and Engineering Chemistry Research, 2011, 50(18): 10465-10475.
[11] HOLST J V. Kinetic study of with various amino acid salts in aqueous solution[J]. Chemical Engineering Science, 2009. 64(1): 59-68.
[12] BLAUWHOFF P M M, VERSTEEG G F, VANSWAAIJ W P M., 1984. A study on the reaction between CO2and alkanolamines in aqueous solutions[J]. Chemical Engineering Science, 1984, 39(2): 207-225.
[13] PINSENT B R W, PEARSON L, ROUGHTON F J W. The kinetics combination of carbon dioxide with hydroxide ions [J]. Transactions of the Faraday Society, 1956, 52(17): 1512-1520.
[14] VAIDYA P D. Kinetics of Carbon Dioxide removal by aqueous alkaline amino acid salts[J]. Industrial & Engineering Chemistry Research, 2010, 49(21):11067-11072.
[15] KUCKA L, RICHTER J, KENIG EY, et al. Determination of gas liquid reaction kinetics with a stirred cell reactor[J]. Separaton and Purification Technology, 2003, 31(2): 163-175.
[16] HOBLER T. Mass transfer and absorbers[M]. Pergamon Press, Oxford, 1966: 42-45.
[17] DANCKWERTS P V. Gas liquid reaction[M]. McGraw Hill, NewYork, 1970: 148-156.
[18] VANSWAAIJ WPM, VERSTEEG GF. Mass transfer accompanied with complex reversible reaction in gas liquid systems: An overview[J]. Chemical Engineering Science, 1992,47(13/14): 3181-3195.
[19] PACHECO MA. Mass transfer, kinetics and rate based modeling of reactive absorption[M]. Doctoral Dissertation. The University of Texas at Austin,1998:101-106.
[20] 申淑锋,冯晓霞,赵瑞红.活化碳酸钾溶液吸收CO2的动力学研究.高校化学工程学报,2013. 27(5): 903-909.
SHEN Shu feng, FENG Xiao xia, ZHAO Rui hong. kinetics of CO2 absorption by promoted aqueous potassium carbonate solution [J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(5):903-909.
[21] PORTUGAL A F, SOUSA J M, MAGALHES F D, et al., Solubility of carbon dioxide in aqueous solutions of amino acid salts [J]. Chemical Engineering Science, 2009. 64(9): 1993-2002.
[22] HOLST J V, KERSTEN S R A, HOGENDOORN K J A, et al. Physiochemical properties of several aqueous potassium amino acid salts [J]. Journal of Chemical and Engineering Data, 2008. 53(6): 1286-1291.
[23] GUO Dong fang, THEE H, TAN Chun y,et al. Amino Acids as carbon capture solvents: chemical kinetics and mechanism of the Glycine + CO2 reaction [J]. Energy and Fuels, 2013. 27(7): 3898-3904.
[24] FANG Meng xiang, XIANG Qun yang, YU Chun jiang, et al. Experimental study on CO2 absorption by aqueous ammonia solution at elevated pressure to enhance CO2 absorption and suppress ammonia vaporization [J]. Greenhouse Gases: Science and Technology,2014, 5(2): 201-221.

[1] FANG Meng-xiang, JIANG Wen-min, WANG Tao, XIANG Qun-yang, LU Jia-hui, ZHOU Xu-ping. Simulation and optimization of novel CO2 direct steam stripping process based on the experimental results[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1565-1571.
[2] WANG Ming-xi, FANG Meng-xiang, WANG Zhen, PAN Yi-li, LUO Zhong-yang. CO2 absorption and desorption by phase transition lipophilic amine solvents[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 662-668.
[3] SHEN Wei, SUN Rong-ze, TANG Ke, JIN Tao. Small-scale air separation process utilizing cold energy  from LNG satellite station[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(3): 549-553.