Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Power abd Energy Engineering     
Exergy analysis of heat transfer elements of corrugated plate with perforations
LI Peng cheng1,2, SUN Zhi jian1,2, HUANG Hao1,2, CHENG Gong1,2, HU Ya cai1,2
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027;2. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027
Download:   PDF(764KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
A thermodynamic exergy analysis method was adopted in order to solve the problem that it is hard to evaluate the performance of corrugated plate heat transfer elements with perforations. Exergy loss curve and exergy loss coefficient curve were obtained by using transient test method. The curves both have a turning point at Reynolds number of about 4 400,and achieve the peak value at the turning point. The turning point was derived from the transition state that has violent irregular intense motions, and the entropy increases with the rising Reynolds number, making exergy loss and exergy loss coefficient get the maximum value of 41 kJ and 0.65, respectively. Turning point is the critical point of transition state to fully turbulent. The result shows that the exergy analysis method can evaluate the effect of heat transfer enhancement reasonably, and serious energy waste happens near the turning point.


Published: 01 February 2016
CLC:  TK 124  
Cite this article:

LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 306-311.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.02.015     OR     http://www.zjujournals.com/eng/Y2016/V50/I2/306


带扰流孔波纹板蓄热元件的分析

针对带扰流孔波纹板蓄热元件强化传热的综合效果较难评价的问题,提出基于热力学定律的分析方法.采用瞬态实验方法得到了损与损系数随雷诺数的变化曲线,曲线表明损和损系数在雷诺数为4 400左右有一个转折点,转折点处损和损系数的数值均达到峰值.转折点存在的原因为流体的流态处于过渡态时流体的无规则运动变化剧烈,导致流体的熵增会随雷诺数的增大而增大使损和损系数数值达到最大,分别为41 kJ、0.65.转折点即为流体流态从过渡态转变到完全湍流的临界点.结果表明,分析方法可较合理地评价强化传热综合效果且转折点附近能量浪费严重.

[1] 林宗虎,徐通模.实用锅炉手册[M].北京:化学工业出版社,2009: 324-341.
[2] 国家电力公司电力机械局等.电站锅炉空气预热器[M].北京:中国电力出版社,2002: 53-67.
[3] SAHIN B,DEMIR A. Performance analysis of a heat exchanger having perforated square fins [J]. Applied Thermal Engineering,2008,28: 621-632.
[4] SAHIN B,DEMIR A. Thermal performance analysis and optimum design parameters of heat exchanger having perforated pin fins [J]. Energy Conversion and Management,2008,49: 1684-1695.
[5] KARABACAK R,YAKAR G. Forced convection heat transfer and pressure drop for a horizontal cylinder with vertically attached imperforate and perforated circular fins [J]. Energy Conversion and Management,2011,52: 2785-2793.
[6] SHAERI  M R,YAGHOUBI M. Numerical analysis of turbulent convection heat transfer from an array of perforated fins [J]. International Journal of Heat and Fluid Flow,2009,30: 218-228.
[7] SHAERI M R,YAGHOUBI M. Thermal enhancement from heat sinks by using perforated fins [J]. Energy Conversion and Management,2009,50: 1264-1270.
[8] ZHANG L,CHE D F. Influence of corrugation profile on the thermal hydraulic performance of Cross Corrugated plates [J]. Numerical Heat Transfer,Part A: Applications,2011,59(4): 267-296.
[9] FOCKE W, ZACHARIADES J, OLIVIER I. The effect of the corrugation inclination angle on the thermol hydraulic performance of plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 1985, 28(8): 1469-1479.
[10] CIOFALO M,STASIEK J,COLLINS M.W. Investigation of flow and heat transfer in corrugated passages—II. Numerical simulations [J]. International Journal of Heat and Mass Transfer, 1996, 39(1): 165-192.
[11] ZHANG L Z. Turbulent three dimensional air flow and heat transfer in a cross corrugated triangular duct [J]. ASME Journal of Heat Transfer, 2005, 127(10): 1151-1158.
[12] JAIN S,JOSHI A,BANSAL P.K. A new approach to numerical simulation of small sized plate heat exchangers with chevron plates [J]. ASME Journal of Heat Transfer,2007,129(3): 291-297.
[13] WANG Q W,ZHANG D J,XIE G N. Experimental study and genetic algorithm based correlation on pressure drop and heat transfer performances of a cross corrugated primary surface heat exchanger [J]. ASME Journal of Heat Transfer, 2009, 131(6): 061802.
[14] 李建军,陈江平,陈芝久. 低雷诺数流动错位翅片传热和压降特性的实验研究[J]. 能源技术,2004,25(4):147-149.
LI Jian ju,CHEN Jiang ping,CHEN Zhi jiu.Experimental study of heat transfer and pressure drop characteristics of the offset strip fin in low Reynolds number [J]. Energy Technology,2004,25(4):147-149.
[15] 吴双应,牟志才,刘泽筠. 换热器性能的经济评价[J].热能动力工程,1999,14(84): 437-440.
WU Shuang ying,MOU Zhi cai,LIU Ze jun. Exergy economic evaluation of a heat exchanger performance [J]. Journal of Engineering for Thermal Energy & Power,1999,14(84): 437-440.
[16] 吴存真,张诗针,孙志坚. 热力过程分析基础[M].杭州:浙江大学出版社,2000: 1-2.
[17] LUO X,WILFRIED R,ULRICH L. The single blow transient testing technique considering longitudinal core conduction and fluid dispersion [J]. International Journal of Heat and Mass Transfer,2001, 44: 121-129.
[18] CHANG Z C, HUNG M S, DING P P, et al. Experimental evaluation of thermal performance of Gifford McMahon regenerator using an improved single blow model with radial conduction [J]. International Journal of Heat and Mass Transfer, 1999, 42: 405-413.
[19] CHEN P H, CHANG Z C. Measurements of thermal performance of cryocooler regenerators using an improved single blow method [J]. International Journal of Heat and Mass Transfer,1997,40(10): 2341-2349.
[20]  SHAJI K, SARIT K D. The effect of flow maldistribution on the evaluation of axial dispersion and thermal performance during the single blow testing of plate heat exchangers [J]. International Journal of Heat and Mass Transfer,2010,53: 1591-1602.
[21] ZHANG L,CHE D F. An experimental and numerical investigation on the thermal hydraulic performance of double notched plate [J]. ASME Journal of Heat Transfer, 2012, 134(9): 091802.
[22] SHEER T J,DEKLERK G B,JAWUREK H H,et al. A versatile computer simulation model for rotary regenerative heat exchangers [J]. Heat Transfer Engineering,2006,27(5): 68-79.
[23] 邱丽霞,陈光利,张静媛. 回转式空气预热器漏风的分析[J]. 热力发电,2007(8): 52-54.
QIU Li xia,CHEN Guang li,ZHANG Jing yuan. Exergy analysis of air leakage in rotary air preheaters [J]. Thermal Power Generation,2007(8): 52-54.
[24] 伊.普利戈金. 从存在到演化[M]. 北京:北京大学出版社,2007: 95-136.

[1] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2087-2093.
[2] LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2113-2119.
[3] ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1859-1864.
[4] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[5] FENG Zhao zan, LI Jun ye, LI Wei. Heat transfer characteristics of subcooled flow boiling in one sided heating mini gap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 671-682.
[6] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 681-690.
[7] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 477-484.
[8] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.
[9] DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you. Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1478-1486.
[10] ZHANG Jing-zhi, LI Wei. Numerical simulation of gas-liquid Taylor flow in mini/micro tubes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1572-1576.
[11] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1242-1248.
[12] HUANG Lian-feng,TIAN Fu-you,LI Qing,FAN Li-wu,YU Zi-tao,WU Hai-yun. Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 916-923.
[13] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai1. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 1-2.
[14] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 330-335.
[15] GUO Hai, NI Yi-hua, WANG Jin, LU Guo-dong. Multi-objective performance optimization method of automotive air-conditioning condenser[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 142-159.