Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Power abd Energy Engineering     
Experimental study on catalytic co pyrolysis of corn stalk and polypropylene
SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
Download:   PDF(982KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
A horizontal tubular reactor was used to study the effects of temperature on polypropylene catalytic pyrolysis, of the mass ratio of corn stalk to polypropylene on product distribution and of coke deposited on catalyst. Results show that when the temperature of polypropylene catalytic pyrolysis is 550 ℃, the yield of pyrolysis oil reaches a maximum with no residue, and the products mainly consist of olefins and aromatic hydrocarbons. The addition of HZSM 5 increases the gasoline fractions (C6 C12) with the mass fraction of 93.39% at 600 ℃. Besides, the coke yield is less than 1% under all the temperature conditions. There is synergistic effect in the co pyrolysis process between corn stalk and polypropylene. Mass ratio of 1∶1 is the demarcating point in terms of different product distributions. Specifically, hydrocarbons domain the pyrolytic products when mass ratio is more that 1∶1, while oxygenated compounds are most abundant in pyrolytic products when mass ratio is tess than 1:1. Coke yield is negatively associated with H/C of the raw materials. The mass ratio of 1∶1 achieves a better result with the negative components content of 6.49%, the yield of hydrocarbons of 71.7% and the coke yield of 1.92%.


Published: 01 February 2016
CLC:  X 511  
Cite this article:

SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan. Experimental study on catalytic co pyrolysis of corn stalk and polypropylene. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 333-340.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.02.019     OR     http://www.zjujournals.com/eng/Y2016/V50/I2/333


玉米秸秆和聚丙烯共催化热解试验

采用管式炉试验装置研究温度对聚丙烯催化热解、不同聚丙烯与玉米秸秆质量比对热解产物和催化剂结焦的影响.结果表明:在聚丙烯单独催化热解温度为550 ℃时,热解油产率最大、残渣率为0,产物主要为烯烃和芳香烃.HZSM 5使得汽油馏分增加,产物轻质化,当温度为600 ℃时,汽油馏分(C6~C12)质量分数达到93%~39 %,不同温度下催化剂结焦率均小于1 %.聚丙烯和玉米秸秆共催化时存在协同作用,热解产物以质量比1∶1为分界点,质量比大于1∶1,具有烃类产物分布,当质量比小于1∶1时,热解产物为含氧有机物,催化剂结焦量与原料的有效氢碳比具有负相关关系.当共催化质量比为1∶1时,热解油有害组分仅6.49 %,烃类产率达71.7 %,催化剂结焦率为1.92 %. 

[1] MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio oil: a critical review [J]. Energy & Fuels, 2006, 20(3): 848-889.
[2] FOSTER A J, JAE J, CHENG Y T, et al. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM 5 [J]. Applied Catalysis A: General, 2012, 423: 154-161.
[3] LU Q, ZHANG Y, T Z, et al. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts [J]. Fuel, 2010, 89(8):2096-2103.
[4] VICHAPHUND S, AHT ONG D, SRICHAROENCHAIKUL V, et al. Catalytic Upgrading of Jatropha Waste Fast pyrolysis vapors over synthesized HZSM 5 using analytical Py GC/MS [J]. Journal of Biobased Materials and Bioenergy, 2013, 7(2): 252-258.
[5] CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil [J]. Energy & Fuels, 2004, 18(2): 590-598.
[6] ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal modified ZSM 5 zeolite [J]. Applied Catalysis B: Environmental, 2012, 127: 281-290.
[7] WILLIAMS P T, HORNE P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils [J]. Journal of Analytical and Applied Pyrolysis, 1995, 31: 39-61.
[8] CARLSON T R, JAE J, LIN Y C, et al. Catalytic fast pyrolysis of glucose with HZSM 5: the combined homogeneous and heterogeneous reactions [J]. Journal of Catalysis, 2010, 270(1): 110-124.
[9] CARLSON T R, TOMPSETT G A, CONNER W C, et al. Aromatic production from catalytic fast pyrolysis of biomass derived feedstocks [J]. Topics in Catalysis, 2009, 52(3): 241-252.
[10] TAARNING E, OSMUNDSEN C M, YANG X, et al. Zeolite catalyzed biomass conversion to fuels and chemicals [J]. Energy & Environmental Science, 2011, 4(3): 793-804.
[11] VISPUTE T P, ZHANG H, SANNA A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils [J]. Science, 2010, 330(6008): 1222-1227.
[12] AHO A, KUMAR N, ERNEN K, et al. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure [J]. Fuel, 2008, 87(12): 2493-2501.
[13] HUANG J, LONG W, AGRAWAL P K, et al. Effects of acidity on the conversion of the model bio oil ketone cyclopentanone on HY zeolites [J]. The Journal of Physical Chemistry C, 2009, 113(38): 16702-16710.
[14] CARLSON T R, VISPUTE T P, HUBER G W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds [J]. ChemSusChem, 2008, 1(5): 397-400.
[15] CHEN N Y, DEGNAN T F, KOENIG L R. Liquid fuel from carbohydrates [J]. Chemtech, 1986, 16(8): 506-511.
[16] ZHANG H, CHENG Y T, VISPUTE T P, et al. Catalytic conversion of biomass derived feedstocks into olefins and aromatics with ZSM 5: the hydrogen to carbon effective ratio [J]. Energy & Environmental Science, 2011, 4(6): 2297-2307.
[17] ZHANG B, ZHONG Z P, DING K, et al. Production of aromatic hydrocarbons from catalytic co pyrolysis of biomass and high density polyethylene: Analytical Py–GC/MS study [J]. Fuel, 2015, 139: 622-628.
[18] 张会岩, 肖睿, Huber G W. 生物质和废弃油脂流化床共催化热解实验研究[J]. 工程热物理学报, 2013, 34(4): 771-774.
ZHANG Hui yan, XIAO Rui, HUBER G W. Experimental research on co catalytic pyrolysis of biomass and waste oil in a fluidized bed [J]. Journal of Engineering Thermophysics, 2013, 34(4): 771-774.
[19] 王健, 张守玉,郭熙,等.平朔煤和生物质共热解实验研究[J].燃料化学学报, 2013, 41(1): 67-73.
WANG Jian, ZHANG Shou yu, GUO Xi, et al. Co pyrolysis of Pingshuo coal and biomass [J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 67-73.
[20] 周利民,王一平,黄群武, 等.生物质/塑料共热解热重分析及动力学研究[J].太阳能学报, 2007, 28(9): 979-983.
ZHOU Li min, WANG Yi ping, HUANG Qun wu, et al. TG analysis and kinetics of biomass/plastic co pyrolysis [J]. ACTA Energlae Solaris Sinica, 2007, 28(9): 979-983.
[21] 王刚.生物质与聚乳酸塑料共热解特性研究[D].大连:大连理工大学, 2009: 54-64.
WANG Gang. Study on copyrolysis characteristics of biomass and polylactic acid plastic blends  [D]. Dalian: Dalian university of technology, 2009: 54-64.
[22] BOCKHORN H, HORNUNG A, HORNUNG U, et al. Kinetic study on the thermal degradation of polypropylene and polyethylene [J]. Journal of Analytical and Applied Pyrolysis, 1999, 48(2): 93-109.
[23] 吴何来. 生物质热解提质燃油内燃机燃烧及排放试验研究[D]. 杭州: 浙江大学, 2014: 45-54.
WU He lai. Experimental study upon combustion and emission properties of upgraded biomass pyrolysis oil on IC engines[D]. Hangzhou: Zhejiang University, 2014: 45-54.
[24] FRENCH R, CZERNIK S. Catalytic pyrolysis of biomass for biofuels production [J]. Fuel Processing Technology, 2010, 91(1): 25-32.
[25] GAYUBO A G, AGUAYO A T, ATUTXA A, et al. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM 5 zeolite. I. Alcohols and phenols [J]. Industrial & Engineering Chemistry Research, 2004, 43(11): 2610-2618.
[26] LI X, LI J, ZHOU G, et al. Enhancing the production of renewable petrochemicals by co feeding of biomass with plastics in catalytic fast pyrolysis with ZSM 5 zeolites [J]. Applied Catalysis A: General, 2014, 481:173-182.

[1] CHEN Wen cong, HOU Yi wen, WU Jian, WANG Li hong. Characteristics of PM2.5 and VOCs emission from chemical fiber industry[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 145-152.
[2] LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao. Evaluation on operation state and stability for denitrification of ultra low emission[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2303-2311.
[3] ZHU Yan qun, YANG Ye, HUANG Jian peng, LIN Fa wei, MA Qiang, XU Chao qun, WANG Zhi hua, CEN Ke fa. Removal of NOx by ozone oxidation from flue gas of 60000 m3/h carbon black drying furnace of rubber plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1865-1870.
[4] ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1516-1520.
[5] QIU Shan, CHEN Cong, DENG Feng xia, JI Ya wan, DING Xiao, MA Fang. Rhodamine B wastewater degradation by graphite graphite electro Fenton system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 704-713.
[6] ZHOU Bin, ZHOU Hao, WANG Jian yang, CEN Ke fa. characteristic of Shenhua coal ash blending with saw dust ash in O2/CO2 atmosphere[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 468-476.
[7] ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang. Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 312-319.
[8] BAO Qiang, ZHOU Hao, LIU Jian cheng, ZHU Guo dong, SHI Wei, CEN Ke fa. Promotional effect and alkali resistant performance of novel CeO2-V2O5/TiO2-SiO2 catalyst[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1855-1862.
[9] FANG Meng-xiang, JIANG Wen-min, WANG Tao, XIANG Qun-yang, LU Jia-hui, ZHOU Xu-ping. Simulation and optimization of novel CO2 direct steam stripping process based on the experimental results[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1565-1571.
[10] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 564-570.
[11] YAO Shui-liang, ZHAO Yi-fan, ZHANG Yuan, NI Jie-cao, WU Zu-liang. Treatment of particle material from diesel exhaust using multilayer dielectric barrier discharge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 157-161.
[12] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 0-1.
[13] WU Zu-liang, XIE De-yuan, LU Hao, YAO Shui-liang, GAO Xiang. Degradation properties and mechanism of naphthalene from exhaust gas using dielectric barrier discharge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1120-1126.
[14] WANG Lei, WANG Zhong-hua, NING Ping, JIANG Ming, QIN Yang-song. Phosphorus-fixation and sulfur-fixation by using Ca(OH)2/clays sorbent[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(5): 874-882.
[15] WANG Ming-xi, FANG Meng-xiang, WANG Zhen, PAN Yi-li, LUO Zhong-yang. CO2 absorption and desorption by phase transition lipophilic amine solvents[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 662-668.