Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy and Enviromental Engineering     
Removal of NOx by ozone oxidation from flue gas of 60000 m3/h carbon black drying furnace of rubber plant
ZHU Yan qun, YANG Ye, HUANG Jian peng, LIN Fa wei, MA Qiang, XU Chao qun, WANG Zhi hua, CEN Ke fa
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
2. Hangzhou Zhongce Qingquan Industrial Limited Company, Hangzhou 311402, China
Download:   PDF(639KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The observation of the removal of NOx by ozone oxidation from flue gas was conducted at a60000m3/h carbon black drying furnace with multi-pollution absorption treatment by ozone oxidation in Hangzhou in order to explore the effect factors of pollutant removal by ozone oxidation in industrial program. Results showed that when the O3/NOx mole ratio was above 0.7, the NOx removal efficiency was enhanced with low temperature of the flue gas in front of the tower and long residence time of the flue gas in spray tower. When the O3/NOx mole ratio was 0.73, the NOx removal efficiency was enhanced with the pH of solution in spray tower. While the O3/NOx mole ratio was 1.23, the pH of solution almost had no effect on the NOx removal efficiency. Considering that temperature of the flue gas is the dominant factor of the NOx removal efficiency, installing a steam water heat exchanger to reduce gas temperature is an effective and available method in industrial program.



Published: 28 October 2016
CLC:  X 511  
Cite this article:

ZHU Yan qun, YANG Ye, HUANG Jian peng, LIN Fa wei, MA Qiang, XU Chao qun, WANG Zhi hua, CEN Ke fa. Removal of NOx by ozone oxidation from flue gas of 60000 m3/h carbon black drying furnace of rubber plant. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1865-1870.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.10.005     OR     http://www.zjujournals.com/eng/Y2016/V50/I10/1865


橡胶厂60000 m3/h炭黑干燥炉烟气臭氧脱硝试验研究

为了研究臭氧氧化多种污染物协同脱除技术在实际工业应用中脱硝效率的影响因素,在杭州某橡胶厂中一台尾部烟道进行臭氧氧化多种污染物协同脱除改造后的烟气量为60 000 m3/h的炭黑干燥炉上,开展烟气臭氧脱硝试验研究.试验结果表明,在O3/NOx当量摩尔比>0.7的情况下,吸收塔前较低的烟气温度、烟气在吸收塔内较长的停留时间都有利于脱硝效率的提高;当O3/NOx当量摩尔比=0.73时,脱硝效率随着浆液pH值的增大而逐步提高;当O3/NOx当量摩尔比=1.23时,脱硝效率基本不受浆液pH值的影响;在臭氧脱硝改造工程应用中,烟气温度是影响脱硝效率的重要因素,在洗涤塔前加装汽水换热器对烟气进行降温处理,是一种提高氮氧化物脱除效率的有效方法.

[1] 段振亚.锅炉烟气湿法脱硫理论与工业技术研究[D].天津:天津大学, 2005.
DUAN Zhenya. Wet flue gas desulfurization of boiler and industrial technology research [D]. Tianjin: Tianjin University, 2005.
[2] GAO X, JIANG Y, ZHONG Y, et al. The activity and characterization of CeO2TiO2 catalysts prepared by the Solgel method for selective catalytic reduction of NO with NH3 [J]. Journal of Hazardous Materials, 2010, 174(13): 734-739.
[3] BOYANO A, LAZARO M J, CRISTIANI C, et al. A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3 [J]. Chemical Engineering Journal, 2009, 149(13): 173-182.
[4] BURCH R, BREEN J P, MEUNIER F C. A review of the selective reduction of NOx, with hydrocarbons under leanburn conditions with nonzeolitic oxide and platinum group metal catalysts [J]. Applied Catalysis BEnvironmental, 2002, 39(4): 283-303.
[5] HU Y, GRIFFITHS K, NORTON P R. Surface science studies of selective catalytic reduction of NO: progress in the last ten years [J]. Surface Science, 2009, 603(1012): 1740-1750.
[6] TAYYEB JAVED M, IRFAN N, GIBBS B M. Control of combustion generated nitrogen oxides by selective non-catalytic reduction [J]. Journal of Environmental Management, 2007, 83(3): 251-289.
[7] MUZIO L J, QUARTUCY G C. Implementing NOx control: research to application [J]. Progress in Energy and Combustion Science, 1997, 23(3): 233-266.
[8] 祝社民,李伟峰,陈英文,等.烟气脱硝技术研究新进展[J].环境污染与防止,2005, 27(9): 699-703.
ZHU Shemin, LI Weifeng, CHEN Yingwen, et al. New development of controlling NOx pollution from plue gas [J]. Environmental Pollution and Control, 2005,27(9): 699-703.
[9] ZAMANSKY V M, MALY P M, SEEKER W R. Byproducts emissions in reburning and advanced reburning technologies [J]. Combustion Science and Technology, 1998, 134(16): 389-405.
[10] HWANG I H, MINOYA H, MATSUTO T, et al. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators [J]. Chemosphere, 2009, 74(10): 1379-1384.
[11] WANG Z, ZHOU J, ZHU Y, et al. Simultaneousremoval of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results [J]. Fuel Processing Technology, 2007, 88(8): 817-823.
[12] STAMATE E, IRIMIEA C, SALEWSKI M. Investigation of NOx reduction by low temperature oxidation using ozone produced by dielectric barrier discharge [J]. Japanese Journal of Applied Physics, 2013, 52: 05EE03-1-5.
[13] SKALSKA K, MILLER J S, LEDAKOWICZ S L. Kinetic model of NOx ozonation and its experimental verification [J]. Chemical Engineering Science, 2011,66(14): 3386-3391.
[14] SUN C L, ZHAO N, ZHUANG Z K, et al. Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in Situ IR measurements [J]. Journal of Hazardous Materials, 2014, 274: 376-383.
[15] YUMII T, YOSHIDA T, DOI K, et al. Oxidation of nitric oxide by atmospheric pressure plasma in a resonant plasma reactor [J]. Journal of Physics D: Applied Physics, 2013, 46(13): 17.
[16] 王智化.燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D].浙江: 浙江大学, 2005.
WANG Zhihua. Mechanism study on multipollution control simultaneously during coal combustion and direct numerical simulation of reaction jets flow [D]. Zhejiang: Zhejiang University, 2005.
[17] HIROTA K, KOJIMA T. Decomposition behavior of PCDD/F isomers in ncinerator gases under electron-beam irradiation [J]. Bulletin of the Chemical Society of Japan, 2005, 78(9): 1685-1690.
[18] WANG Q, YAN J H, TU X, et al. Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma [J]. Fuel, 2009, 88(5): 955-958.
[19] 张相,朱燕群,王智化,等.臭氧氧化多种污染物协同脱除及副产物提纯的试验研究[J].工程热物理学报, 2012, 33(7): 1259-1262.
ZHANG Xiang, ZHU Yanqun, WANG Zhihua, et al. Experimental research for multipollution control by ozone and byproduct purification [J]. Journal of Engineering Thermophysics, 2012, 33(7): 1259-1262.
[20] SKALSKA K, MILLER J S, WILK M, et al. Nitrogen oxides ozonation as a method for NOx emission abatement [J]. Ozone: Science and Engineering, 2012, 34(4): 252-258.
[21] SKALSKA K, MILLER J S, LEDAKOWICZ S. Kinetics of nitric oxide oxidation [J]. Chemical Papers, 2010, 64(2): 269-272.
[22] MOK Y S, LEE H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorptionreduction technique [J]. Fuel Processing Technology, 2006, 87(7): 591-597.
[23] STAMATE E, CHEN W, LORGENSEN L, et al. IR and UV gas absorption measurements during NOxreduction on an industrial natural gas fired power plant [J]. Fuel, 2010, 89(5): 978-985.
[24] 林法伟,朱燕群,徐超群,等.臭氧多脱过程中残留臭氧的分解试验研究[J].浙江大学学报:工学版,2015,49(7): 1249-1254.
LIN Fawei, ZHU Yanqun, XU Chaoqun, et al.Experimental study on residual ozone decomposition in process of multipollutants removal by ozone [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(7): 1249-1254.
[25] WANG Z, LIN F, JIANG S, et al. Ceria substrateoxide composites as catalyst for highly efficient catalytic oxidation of NO by O2[J]. Fuel, 2016, 166: 352-360.
[26] 杨业,徐超群,朱燕群,等.臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝[J].化工学报, 2016, 67(5): 2041-2047.
YANG Ye, XU Chaoqun, ZHU Yanqun, et al. Simultaneous removal of SO2 and NOx by combination of ozone oxidation and Na2S2O3 solution spray [J]. Journal of Chemical Industry and Engineering, 2016, 67(5): 2041-2047.
[27] LIN F, WANG Z, MA Q, et al. N2O5 formation mechanism during the ozone based low temperatureoxidation deNOx process [J]. Energy and Fuels, 2016, 30(6): 5101-5107.
[28] 马强,朱燕群,何勇,等.活性分子O3深度氧化结合湿法喷淋脱硝机理试验研究[J].环境科学学报,2016,36(4): 1428-1433.
MA Qiang, ZHU Yanqun, HE Yong, et al. NOxremoval mechanism by O3 oxidization integrated with wet scrubber [J]. Acta Scientiae Circumstantiae, 2016,36(4): 1428-1433.
[29] GB 132232011,火电厂大气污染物排放标准[S].北京:环境保护部,国家质量监督检疫总局,2011.

[1] CHEN Wen cong, HOU Yi wen, WU Jian, WANG Li hong. Characteristics of PM2.5 and VOCs emission from chemical fiber industry[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 145-152.
[2] LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao. Evaluation on operation state and stability for denitrification of ultra low emission[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2303-2311.
[3] ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1516-1520.
[4] QIU Shan, CHEN Cong, DENG Feng xia, JI Ya wan, DING Xiao, MA Fang. Rhodamine B wastewater degradation by graphite graphite electro Fenton system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 704-713.
[5] ZHOU Bin, ZHOU Hao, WANG Jian yang, CEN Ke fa. characteristic of Shenhua coal ash blending with saw dust ash in O2/CO2 atmosphere[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 468-476.
[6] ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang. Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 312-319.
[7] SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan. Experimental study on catalytic co pyrolysis of corn stalk and polypropylene[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 333-340.
[8] BAO Qiang, ZHOU Hao, LIU Jian cheng, ZHU Guo dong, SHI Wei, CEN Ke fa. Promotional effect and alkali resistant performance of novel CeO2-V2O5/TiO2-SiO2 catalyst[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1855-1862.
[9] FANG Meng-xiang, JIANG Wen-min, WANG Tao, XIANG Qun-yang, LU Jia-hui, ZHOU Xu-ping. Simulation and optimization of novel CO2 direct steam stripping process based on the experimental results[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1565-1571.
[10] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 564-570.
[11] YAO Shui-liang, ZHAO Yi-fan, ZHANG Yuan, NI Jie-cao, WU Zu-liang. Treatment of particle material from diesel exhaust using multilayer dielectric barrier discharge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 157-161.
[12] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 0-1.
[13] WU Zu-liang, XIE De-yuan, LU Hao, YAO Shui-liang, GAO Xiang. Degradation properties and mechanism of naphthalene from exhaust gas using dielectric barrier discharge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1120-1126.
[14] WANG Lei, WANG Zhong-hua, NING Ping, JIANG Ming, QIN Yang-song. Phosphorus-fixation and sulfur-fixation by using Ca(OH)2/clays sorbent[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(5): 874-882.
[15] WANG Ming-xi, FANG Meng-xiang, WANG Zhen, PAN Yi-li, LUO Zhong-yang. CO2 absorption and desorption by phase transition lipophilic amine solvents[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 662-668.