Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy and Enviromental Engineering     
Life cycle greenhouse gas emissions of refined oil from corn straw
LIU Chang qi, HUANG Ya ji, WANG Xin ye, LU Zhi hai, LIU Ling qin
1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China;
2. Tengzhou Yiyuan Coal Gangue Thermal Power Limited Company, Zaozhuang 277500, China
Download:   PDF(1577KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 A hybrid life cycle method, combining the life cycle framework with economic input output life cycle assessment, was used to calculate the life cycle greenhouse gas emissions of corn stalk pyrolysis and hydrogenation upgrading. The effect of indirect greenhouse gas emissions of agricultural machinery production, plant construction, equipment installation, solid waste treatment process and the insurance industry was considered. Results showed that the greenhouse gas emissions of the whole process was 45.2 g /MJ, the direct emissions was 122.02 g /MJ, indirect emissions was 46.4 g/MJ and offset of photosynthesis was 101.68 g/MJ. Three major emissions came from N fertilizer, seed and electricity. The fertilizer manufacturing industry, electric power production and supply industry and grain production industry were the major department with largest indirect emissions, which accounted for 86% of the indirect emissions. The analysis of uncertain factors in the whole process demonstrated that corn straw yield impacted most significantly following with oil production rate and the transport distance was the last. The greenhouse gas emissions of oil refining production process reduced 53.0% and 51.9% compared with cassava based ethanol and traditional gasoline.



Published: 28 October 2016
CLC:  TK 6  
Cite this article:

LIU Chang qi, HUANG Ya ji, WANG Xin ye, LU Zhi hai, LIU Ling qin. Life cycle greenhouse gas emissions of refined oil from corn straw. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1871-1878.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.10.006     OR     http://www.zjujournals.com/eng/Y2016/V50/I10/1871


玉米秸秆制精制油的生命周期温室气体排放研究

采用混合生命周期法,将生命周期框架与经济投入产出生命周期评价相结合,全面考虑农业机械生产、厂房建设、设备安装、固废处理过程及保险业的间接温室气体排放量,对玉米秸秆热解加氢提质得到的精制油进行生命周期温室气体排放量核算.结果表明:整个过程中温室气体排放量为45.2 g /MJ (折算成克CO2 当量),直接排放122.02 g /MJ,间接排放46.4 g /MJ,光合作用抵扣101.68 g /MJ;氮肥投入、种子投入和电力投入为三大主要排放因素;肥料生产制造业、电力生产供应业、谷物生产业三大部门占间接排放总量的86%.分析整个过程温室气体排放量的不确定因素可知:玉米秸秆产量影响最大,产油率次之,运输距离最小.与木薯乙醇和传统汽油相比,精制油生产过程温室气体排放量分别减少53.0%、51.9%.

[1] UUSITALO V, VISNEN S, HAVUKAINEN J, et al. Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil [J]. Renewable Energy, 2014, 69: 103-113.
[2] NATHAN K, DERMOT H, ROBERT B. A life cycle assessment of advanced biofuel production from a hectare of corn [J]. Fuel, 2011, 90 (11): 3306-3314.
[3] NING Shukuang, HUNG Mingchien, CHANG Yinghsi, et al. Benefit assessment of cost, energy, and environment for biomass pyrolysis oil [J]. Journal of Cleaner Production, 2013, 59: 141-149.
[4] RAJAEIFAR M A, GHOBADIAN B, SAFA M, et al. Energy life cycle assessment and CO2 emissions analysis of soybean based biodiesel: a case study [J]. Journal of Cleaner Production, 2014, 66: 233-241.
[5] DANG Qi, YU Chunjiang, LUO Zhongyang. Environmental life cycle assessment of biofuel production via fast pyrolysis of corn stover and hydroprocessing [J]. Fuel, 2014, 131: 36-42.
[6] ZHANG Yanan, HU Guiping, BROWN R C. Lifecycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis [J]. Environmental research letters, 2013, 025001: 113.
[7] 李小环,计军平,马晓明,等.基于EIOLCA的燃料乙醇生命周期温室气体排放研究[J].北京大学学报:自然科学版,2011,47(6): 1081-1088.
LI Xiaohuan, JI Junping, MA Xiaoming, et al. Life cycle greenhouse gas emission assessment of fuel ethanol based on EIOLCA [J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2011,47(6): 1081-1088.
[8] 陈红敏.包含工业生产过程碳排放的产业部门隐含碳研究[J].中国人口·资源与环境,2009, 19(3): 25-30.
CHEN Hongmin. Analysis on embodied CO2 emissions including industrial process emissions [J]. China Population, Resources and Environment, 2009, 19(3): 25-30.
[9] Carnegie Mellon University Green Design Institute. (2008) Economic inputoutput life cycle: assessment (EIOLCA), US 1997 industry benchmark model [EB/OL]. 20080101. http:∥www.eiolca.net.
[10] FORSTER P, RAMASWAMY V, ARTAXO P, et al.Changes in atmospheric constituents and in radiative forcing [R]. Cambridge: Cambridge University Press,2007.
[11] LUO Lin, ESTER V V, HUPPES G, et al. Allocation issues in LCA methodology: a case study of corn stoverbased fuel ethanol [J]. International Journal of Life Cycle Assessment, 2009, 14(6): 529539.
[12] DUFFY M. Estimated costs of crop production in Iowa2014 [EB/OL]. \[2015-08-15\]. http:∥www.extension.iastate.edu/agdm/crops/html/a120.html.
[13] MARTIN J M, DIEMONT SAW, POWELL E, et al.Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management [J]. Agriculture, Ecosystems andEnvironment, 2006, 115(1/2/3/4): 128-140.
[14] FARRELL A E, PLEVIN R J, TURNER B T, et al. Ethanol can contribute to energy and environmental goals [J]. Science, 2006, 311(5760): 506-508.
[15] WRIGHT M M, SATRIO J A, BROWN R C. Technoeconomic analysis of biomass fast pyrolysis to transportation fuels [R]. Colorado: National RenewableEnergy Laboratory, 2010.
[16] MARKER T L. Opportunities for biorenewables in oil refineries final technical report [R]. Illinois: Department of Energy, 2005.
[17] 杨慧.基于能值分析的生物质能评价的研究—以木薯燃料乙醇为例[D].广州:华南理工大学,2011: 55.
YANG Hui. Emergybased evaluation research on plant bioenergy: cassavabased fuel ethanol [D].Guangzhou: South China University of Technology, 2011: 55.
[18] 欧训民,张希良,常世彦,等.生物燃料乙醇和生物柴油全生命周期分析[J]. 太阳能学报,2010,31(10):1246-1250.
OU Xunmin, ZHANG Xiliang, CHANG Shiyan, et al. LCA of bioethanol and biodiesel pathways in China [J]. Acta Energlae Solaris Sinica, 2010, 31(10): 1246-1250.

[1] GONG Bin, YU Chun-jiang, WANG Zhun, LUO Zhong-yang. Characteristic of deposits on different heating surfaces from a biomass-fired grate boiler[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1578-1584.
[2] CHEN Chao, ZHOU Jin-song, XIANG Yang-yang, GU Shan, LUO Zhong-yang. Biomass staged-gasification characteristics in high-temperature entrained-flow bed[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 626-631.
[3] WU He-lai, ZHOU Jin-song, XU Cang-su, CHEN Wen, YANG Yi, LUO Zhong-yang. Experimental research on gasoline engine fueled with biomass pyrolysis oil upgraded in supercritical ethanol[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 136-141.
[4] YU Chun-jiang,WANG Zhun,GONG Bin,LUO Zhong-yang. Corrosion characteristics of biomass bolier steel in KCl contact condition[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 2046-2052.
[5] ZHOU Hui-long, XIAO Gang,WU Rong-bing, HUANG Lei,NI Ming-jiang, GAO Xiang, CEN Ke-fa. Influence of temperature on the structure of lignin conductive charcoal graphitization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 2066-2071.
[6] WU Rong-bing, XIAO Gang, CHEN Dong, ZHOU Hui-long, NI Ming-jiang, GAO Xiang, CEN Ke-fa.
Characteristics of electrically conductive charcoal prepared by high temperature carbonization of lignin
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1752-1757.
[7] CHEN Guan-yi, KONG Wei, XU Ying, LI Wan-qing, MA Long-long,YAN Bei-bei, CHEN Hong. Review of hydrogen production from biomass by chemical conversion process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1318-1328.
[8] FU Qi-rang, HUANG Ya-ji, NIU Miao-miao, YANG Gao-qiang, LIU Chang-qi, WANG Xin-ye. Experimental study on refuse derived fuel gasification with oxygen-rich air in fluidized bed gasifier[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1265-1271.
[9] CHENG Jun, ZHUANG Liang, HUANG Yun, SUN Jing, ZHOU Jun-hu, CEN Ke-fa. Flow field optimization and flashing light effect of flat plate photobioreactor for microalgae growth[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(11): 1958-1963.
[10] ZHU Ying-ying, WANG Shu-rong,GE Xiao-lan,LI Xin-bao,ZHOU Jin-song,LUO Zhong-yang. Thermodynamic simulation of methanol synthesis from
biomass-derived syngas
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(2): 341-347.
[11] CHEN Ling-hong, WU Fa, WANG Yong, WU Xue-cheng, ZHOU Hao, CEN Ke-fa. The size determination of soot particle in turbulent flame based on
time-resolved laser-induced emission
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(11): 2169-2172.
[12] MA Xiao-Qin, QIN Jian-Guang, JIA Zhong-Yang, TU Chun-Jiang, FANG Meng-Xiang, CEN Ge-Fa. Effect of additives on fusion characteristic
of ashes during rice straw combustion
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(8): 1573-1578.
[13] CHEN Ling-Gong, TUN Hua-Cheng, ZHOU Hao, CEN Ge-Fa. Quantitative analysis of multi-component gases mixture
evolved in combined TG-FTIR
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(8): 1579-1583.
[14] WANG Qi, JIA Zhong-Yang, WANG Shu-Rong, CEN Ge-Fa. Products of highgrade liquid fuels by biomass fast pyrolysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(5): 988-990.
[15] SONG Wen-Lu, CHENG Jun, XIE Bin-Fei, ZHOU Dun-Hu, CEN Ge-Fa. Cogeneration of hydrogen and methane from pretreated fat by anaerobic fermentation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 476-481.