Please wait a minute...
J4  2010, Vol. 44 Issue (3): 476-481    DOI: 10.3785/j.issn.1008973X.2010.03.012
    
Cogeneration of hydrogen and methane from pretreated fat by anaerobic fermentation
 SONG Wen-Lu, CHENG Jun, XIE Bin-Fei, ZHOU Dun-Hu, CEN Ge-Fa
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cogeneration of hydrogen and methane from pretreated fat by anaerobic fermentation was investigated to improve energy conversion efficiency in hydrogen production from fat, In the hydrogen producing phase, more fat hydrolyzes after the treatment of lipase and alkali, so the cumulative hydrogen production increases. Domesticated bacteria accommodate quickly in the substrate, which results in the curtailment of lagphase time and the increase of the specific hydrogen production. The optimum sodium ion concentration is no more than 0.2 mol/L when using NaOH for hydrolyzation, otherwise hydrogen producing bacteria would be inhibited by high concentration of sodium ion. Methane is produced from the residue of hydrogen production to increase the energy conversion efficiency and the feedstock utilization ratio. The maximum specific hydrogen yield from fat is 32.6 mL/g in the first stage and the methane yield is 24.88 mL/g in the second stage. The cogeneration of hydrogen and methane from fat by twophase anaerobic fermentation can increase the energy conversion efficiency from 0.85% (only hydrogen production) to 2.99%.



Published: 20 March 2012
CLC:  TK 6  
Cite this article:

SONG Wen-Lu, CHENG Jun, XIE Bin-Fei, ZHOU Dun-Hu, CEN Ge-Fa. Cogeneration of hydrogen and methane from pretreated fat by anaerobic fermentation. J4, 2010, 44(3): 476-481.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2010.03.012     OR     http://www.zjujournals.com/eng/Y2010/V44/I3/476


脂肪预处理发酵联产氢气和甲烷的研究

针对脂肪难以产氢、能源转化率低的问题,以肥猪肉作为脂肪代表物,研究了其预处理后发酵联产氢气和甲烷的特性.结果表明,在产氢阶段,碱和脂肪酶预处理促进了脂肪的水解,提高了累积产氢量.驯化菌种能较快的适应底物环境,从而缩短延滞期并提高了产气速率.碱水解时应控制体系的Na+终浓度不超过0.2 mol/L,更高的碱用量会因Na+浓度过高而抑制产氢.为了提高能源转化率和原料利用率,提出了利用脂肪发酵产氢后的有机酸废液继续联产甲烷的创新工艺,并利用该工艺得到底物总挥发性固体的单位产氢潜力为32.6 mL/g,联产甲烷潜力为24.88 mL/g.其中单产氢气的能源转化率为0.85%,联产甲烷以后的能源转化率可提高至2.99%.
 

[1] 周俊虎,戚峰,程军,等.不同来源污泥对稻草发酵产氢影响的研究[J].浙江大学学报:工学版,2007,41(5): 761764.
ZHOU Junhu, QI Feng, CHENG Jun, et al. Influence of different digested sludge on biohydrogen production from wheat straw by fermentation[J]. Journal of Zhejiang University :Engineering Science, 2007,41(5): 761764.
[2] 周俊虎,谢琳,程军,等.富含三类大分子有机质的废弃食物发酵产氢特性[J].浙江大学学报:工学版,2006,40(11):20072010.
ZHOU Junhu, XIE Lin, CHENG Jun, et al. Biohydrogen production from food wastes composed of carbohydrates, proteins and lipoids by fermentation[J]. Journal of Zhejiang University: Engineering Science, 2006,40(11): 20072010.
[3] LAY J J, FAN K S, CHANG J L, et al. Influence of chemical nature of organic wastes on their coversion to hydrogen by heatshock digested sludge[J]. International Journal of Hydrogen Energy, 2003, 28: 13611367.
[4] OKAMOTO M, MLYAHARA T, MLZUNO O, et al. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes[J]. Water Science and Technology, 2000, 41(3): 2532.
[5] HANAKI K, MATSUO T, NAGASE M. Mechanism of inhibition caused by longchain fatty acids in anaerobic digestion process[J]. Biotechnology and Bioengineering, 1981, 23: 15911610.
[6] 周洪波,陈坚,赵由才,等.长链脂肪酸对厌氧颗粒污泥产甲烷毒性研究[J].水处理技术,2002,28(2): 9397.
ZHOU Hongbo, CHEN Jian, ZHAO Youcai, et al. Methanogenic activity of anaerobic granular sludge by longchain fatty acids[J]. Technology of Water Treatment, 2002, 28(2): 9397.
[7] HAO X L, ZHOU M H, YU H Q, et al. Effect of sodium ion concentration on hydrogen production from sucrose by anaerobic hydrogenproducing granular sludge[J]. Chinese Journal of Chemical Engineering, 2006, 14(4): 511517.
[8] BUEGE D R, INGHAM B H, HENDERSON D W, et al. A nationwide audit of the composition of pork and chicken cuts at retail[J]. Journal of Food Composition and Analysis, 1998, 11: 249261.
[9] 李桂华.油料油脂检验与分析[M].北京:化学工业出版社,2006.
[10] XIE B F, CHENG J, ZHOU J H, et al. Production of hydrogen and methane from potatoes by twophase anaerobic fermentation[J]. Bioresource Technology, 2008; 99: 59425946.
[11] 杨生玉,王刚,沈永红.微生物生理学[M].北京:化学工业出版社,2007.
[12] COHEN A. Anaerobic digestion of glucose with separated acid production and methane formation[J]. Water Research, 1979, 3: 570580.
[13] NOIKE T, MIZUNO O. Hydrogen fermentation of organic municipal wastes[J]. Water Science and Technology, 2000, 42(12): 155162.
[14] FANG HHP, LI Chenlin, ZHANG Tong. Acidophilic biohydrogen production from rice slurry[J]. International Journal of Hydrogen Energy, 2006, 31: 683692.
[15] ONAY O, METE K O. Pyrolysis of rapeseed in a free fall reactor for production of biooil[J]. Fuel, 2006, 85(1213): 19211928.

[1] CHENG Jun, ZHUANG Liang, HUANG Yun, SUN Jing, ZHOU Jun-hu, CEN Ke-fa. Flow field optimization and flashing light effect of flat plate photobioreactor for microalgae growth[J]. J4, 2013, 47(11): 1958-1963.
[2] ZHU Ying-ying, WANG Shu-rong,GE Xiao-lan,LI Xin-bao,ZHOU Jin-song,LUO Zhong-yang. Thermodynamic simulation of methanol synthesis from
biomass-derived syngas
[J]. J4, 2011, 45(2): 341-347.
[3] MA Xiao-Qin, QIN Jian-Guang, JIA Zhong-Yang, TU Chun-Jiang, FANG Meng-Xiang, CEN Ge-Fa. Effect of additives on fusion characteristic
of ashes during rice straw combustion
[J]. J4, 2010, 44(8): 1573-1578.
[4] CHEN Ling-Gong, TUN Hua-Cheng, ZHOU Hao, CEN Ge-Fa. Quantitative analysis of multi-component gases mixture
evolved in combined TG-FTIR
[J]. J4, 2010, 44(8): 1579-1583.
[5] WANG Qi, JIA Zhong-Yang, WANG Shu-Rong, CEN Ge-Fa. Products of highgrade liquid fuels by biomass fast pyrolysis[J]. J4, 2010, 44(5): 988-990.