Please wait a minute...
J4  2013, Vol. 47 Issue (11): 1958-1963    DOI: 10.3785/j.issn.1008-973X.2013.11.011
    
Flow field optimization and flashing light effect of flat plate photobioreactor for microalgae growth
CHENG Jun, ZHUANG Liang, HUANG Yun, SUN Jing, ZHOU Jun-hu, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027,  China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

According to the properties of the flashing light effect, a novel flat plate airlift loop photobioreactor with inner cross-diversion transverse baffles was developed for microalgae growth. The light attenuation characteristics in microalgae medium and airlift flow effects on microalgae growth were studied. The flashing light effect was analyzed through numerical simulation of flow field and microalgae biomass yields in two photobioreactors were compared by experiments. The light attenuation formula of Nannochloropsis sp. medium was calculated and optimal airlift flow rate of 05 L·min-1 per liter was obtained. When cross-diversion transverses baffles were placed in a flat plate airlift loop photobioreactor, a turbulent flow field with many large eddies that clockwise vortices alternated with anticlockwise vortices was formed in the airlift procedure, which improved gas-liquid mixing and nutrients mass transfer. The horizontal flow velocity of microalgae medium increased to 15~22 times and light-dark cycle period markedly reduced to 1/19 compared to those in the photobioreactor without cross-diversion transverse baffles. The results show that the high-frequence flashing light effect improved microalgae growth and increased biomass yield by 25%.



Published: 01 November 2013
CLC:  TK 6  
Cite this article:

CHENG Jun, ZHUANG Liang, HUANG Yun, SUN Jing, ZHOU Jun-hu, CEN Ke-fa. Flow field optimization and flashing light effect of flat plate photobioreactor for microalgae growth. J4, 2013, 47(11): 1958-1963.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.11.011     OR     http://www.zjujournals.com/eng/Y2013/V47/I11/1958


平板式微藻光反应器的流场优化及闪光效应

针对微藻闪光效应的特点,开发一种内置交叉导流横向隔板的平板气升环流式微藻光反应器.研究藻液中光衰减规律和通气流量对微藻生长的影响,通过流场数值模拟剖析闪光效应特点,实验对比不同反应器的生物质产量.得到微拟球藻液的光衰减公式,每升藻液的最佳通气流量为05 L·min-1.反应器增加交叉导流横向隔板后,形成一个顺时针和逆时针旋转的交替更迭的大涡流动,加强气液混合和物质传递,在水平光程方向上藻液速度提高到15~22倍,藻液光暗循环周期显著降低到无横向隔板时的1/19.结果表明,快速闪光效应能够明显促进微藻光合生长,最终使微藻生物质产量提高了25%.

[1] SPOLAORE P, JOANNIS-CASSAN C, DURAN E, et al. Commercial applications of microalgae [J]. Journal of Bioscience and Bioengineering, 2006, 101(2): 87-96.
[2] POSTEN C. Design principles of photobioreactors for cultivation of microalgae [J]. Engineering in Life Sciences, 2009, 3: 165-177.
[3] RICHMOND A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview [J]. Hydrobiologia, 2004, 512: 33-37.
[4] KONDO T, WAKAYAMA T, MIYAKE J. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment [J]. International Journal of Hydrogen Energy, 2006, 31(11): 1522-1526.
[5] POLLE J, KANAKAGIRI S, JIN E, et al. Truncated chlorophyll antenna size of the photosystems: a practical method to improve microalgal productivity and hydrogen production in mass culture \
[J\]. International Journal of Hydrogen Energy, 2002, 27(11/12): 1257-1264.
[6] ORLANDO J, ASHER K, EMERSON A, et al. Comparative energy life cycle analyses of microalgal biomass production in open ponds and photobioreactors [J]. Bioresource Technology, 2010, 101: 1406-1413.
[7] JANSSEN M, JANSSEN M, WINTER M, et al. Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles [J]. Journal of Biotechnology, 2000b, 78: 123-137.
[8] GHOSAL S, TOGERS M, WRAY A. The turbulent life of phytoplankton [C]∥Center for Turbulence Research Proceedings of the Summer Program. [S. l.]: [s. n.], 2000: 31-46.
[9] GROBBELAAR J. Turbulence in mass algal cultures and the role of light/dark fluctuations [J]. Journal of Applied Phycology, 1994, 6: 331-335.
[10] EDWARDS N, BEETON S, BULL A, et al. A novel device for the assessment of shear effects on suspended microbial cultures [J]. Applied Microbiology and Biotechnology, 1989, 30: 190-195.
[11] PERNER I, POSTEN C, BRONESKE J. CFD optimization of a plate photobioreactor used for cultivation of microalgae [J]. Engineering in Life Sciences, 2003, 16: 287-291.
[12] PRUVOST J, POTTIER L, LEGRAND J. Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor [J]. Chemical Engineering Science, 2006, 61: 4476-4489.
[13] YU G, LI Y, SHEN G, et al. A novel method using CFD to optimize the inner structure parameters of flat photobioreactors [J]. Journal of Applied Phycology, 2009, 21: 719-727.
[14] 林晨, 李元广, 王伟良, 等. 一种新型多节隔板平板式光生物反应器的数值和实验研究 [J].高校化学工程学报, 2009, 23(2): 263-269.
LIN Chen, LI Yuan-guang, WANG Wei-liang, et al. Numerical and experimental investigation of a novel flat photobioreactor with multistage separator [J].Journal of Chemical Engineering of Chinese Universities, 2009, 23(2): 263-269.
[15] 李昱喆, 齐祥明, 刘天中, 等. 带波纹隔板的平板式光生物反应器流动特性 [J].过程工程学报, 2009, 10(5): 849-855.
LI Yu-zhe, QI Xiang-ming, LIU Tian-zhong, et al. Investigation on hydrodynamic behaviors in a wave-baffled panel photobioreactor [J]. The Chinese Journal of Process Engineering, 2009, 10(5): 849-855.
[16] 黄适, 吴双秀, 徐健. 微拟球藻培养中共生关系的初步研究 [J].安徽农业科学, 2011, 29(23): 14246-14249.
HUANG Shi, WU Shuang-xiu, XU Jian. Study on symbiotic association in Nannochloropsis culture [J]. Journal of Anhui Agriculture Science, 2011, 29(23): 14246-14249.
[17] BARBARA B, KELLY A. Investigation of the light dynamics and their impact on algal growth rate in a hydraulically integrated serial turbidostat algal reactor (HISTAR) [J]. Aquacultural Engineering, 2006, 35: 122-134.
[18] CORNET J, DUSSAP C, GROS J, et al. A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors [J]. Chemical Engineering Science, 1995, 50(9): 1489-1500.
[19] MERCHUK J. Shear effects on suspended cells [J]. Advanced Biochemical Engineering, 1991, 44: 65-95.
[20] 胡晗华, 高坤山. CO2对微拟球藻(Nannochloropsis sp.)利用有机碳和光合作用的影响 [J]. 植物生理学通讯, 2006, 42(4): 633-637.
HU Han-hua, GAO Kun-shan. Effects of CO2 on the organic carbon utilization and photosynthesis of Nannochloropsis sp. [J]. Plant Physiology Communications, 2006, 42(4): 633-637.
[21] GILBERT J, RAY S, DAS D. Hydrogen production using Rhodobacter sphaeroides in a flat panel rocking photobioreactor [J]. International Journal of Hydrogen Energy, 2011, 36: 3434-3441.

[1] ZHU Ying-ying, WANG Shu-rong,GE Xiao-lan,LI Xin-bao,ZHOU Jin-song,LUO Zhong-yang. Thermodynamic simulation of methanol synthesis from
biomass-derived syngas
[J]. J4, 2011, 45(2): 341-347.
[2] CHEN Ling-Gong, TUN Hua-Cheng, ZHOU Hao, CEN Ge-Fa. Quantitative analysis of multi-component gases mixture
evolved in combined TG-FTIR
[J]. J4, 2010, 44(8): 1579-1583.
[3] MA Xiao-Qin, QIN Jian-Guang, JIA Zhong-Yang, TU Chun-Jiang, FANG Meng-Xiang, CEN Ge-Fa. Effect of additives on fusion characteristic
of ashes during rice straw combustion
[J]. J4, 2010, 44(8): 1573-1578.
[4] WANG Qi, JIA Zhong-Yang, WANG Shu-Rong, CEN Ge-Fa. Products of highgrade liquid fuels by biomass fast pyrolysis[J]. J4, 2010, 44(5): 988-990.
[5] SONG Wen-Lu, CHENG Jun, XIE Bin-Fei, ZHOU Dun-Hu, CEN Ge-Fa. Cogeneration of hydrogen and methane from pretreated fat by anaerobic fermentation[J]. J4, 2010, 44(3): 476-481.