Please wait a minute...
J4  2010, Vol. 44 Issue (11): 2169-2172    DOI: 10.3785/j.issn.1008973X.2010.11.022
    
The size determination of soot particle in turbulent flame based on
time-resolved laser-induced emission
CHEN Ling-hong, WU Fa, WANG Yong, WU Xue-cheng, ZHOU Hao, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An on-line size measurement of soot particles in unsteadystate propane turbulent flame was investigated.  By applying high-power pulse laser beam, the soot particles in flame were heated and their thermal radiation was detected by a photomultiplier. In order to reduce the signal noise, a time-division average fitting method was developed to determine the size of such submicron scale solid particulates as soot particles, and the results coincide with those obtained by Transmission Electron Microscope. By counting the particle size under a series of laser pulses, the size distribution of soot particles in turbulent flame with various ratio of air to fuel was obtained. The above method can be used as an effective tool for on-line monitoring size distribution of inhalable particulates in unsteady-state combustion processes.



Published: 23 December 2010
CLC:     
  TK 6  
Cite this article:

CHEN Ling-hong, WU Fa, WANG Yong, WU Xue-cheng, ZHOU Hao, CEN Ke-fa. The size determination of soot particle in turbulent flame based on
time-resolved laser-induced emission. J4, 2010, 44(11): 2169-2172.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2010.11.022     OR     http://www.zjujournals.com/eng/Y2010/V44/I11/2169


基于时域激光诱导辐射确定湍流火焰烟黑粒径

对非稳态丙烷湍流火焰中的烟黑粒径进行在线测量.高能脉冲激光直接照射火焰中的烟黑微粒,其受热辐射光谱信号由光电倍增管检测.为降低信号噪音,采用分段平均方法拟合获得烟黑等亚微米量级固体颗粒粒径.所得结果与透射电镜测量结果吻合.通过统计多个激光脉冲下颗粒各粒径值,获得了不同空燃比下丙烷湍流火焰中烟黑粒径分布的变化规律.本方法为非稳态燃烧过程中可吸入颗粒物尺寸分布提供了一种有效的在线监测手段.

[1] MELTON L A, Soot diagnostics based on laserheating[J]. Applied Optics, 1984, 23(13): 2201-2208.
[2]MICHELSEN H A, Understanding and predicting the temporal response of laserinduced incandescence from carbonaceous particles [J]. Journal of Chemical Physics, 2003, 118(15): 7012-7045.
[3] 王飞,严建华,马增益,等.运用激光诱导发光法测量碳黑粒子浓度的模拟计算[J]. 中国电机工程学报, 2006,177(7): 6-11.
WANG Fei, YAN Jianhua, MA Zengyi, et al. Simulation on soot concentration measurement with laser induced incandescence [J]. Proceedings of the CSEE, 2006,177(7): 6-11.
[4] 王宇, 姚强, 何旭,等.用激光诱导可见光法测量电场影响下火焰碳烟颗粒浓度的分布变化[J]. 中国电机工程学报,2008,238(8): 34-39.
WANG Yu, YAO Qiang, HE Xu, et al. Electric field control of soot distribution in flames using laserinduced incandescence [J]. Proceedings of the CSEE, 2008,238(8): 34-39.
[5] SCHULZ C, KOCK B F, HOFMANN M, et al. Laserinduced incandescence: recent trends and current questions [J].Applied Physics BLasers and Optics, 2006,83(3):333-354.
[6] CHEN Linghong, CEN Kefa, GARO A, et al. A 3D numerical simulation of laser induced incandescence of soot particles in coal combustion products [J]. Zhejiang University Science A, 2009, 10(9): 1320-1326.
[7] CHEN Linghong, GARO A, CEN Kefa, et al. Numerical simulation of soot optical diagnostics in nonoptically thin media [J]. Applied Physics B Lasers and Optics, 2007,87(4): 739-747.
[8] WILL S, SCHRAML S, LEIPERTZ A. 2Dimensionl sootparticle sizing by timeresolved laserinduced incandescence [J].Optics Letters, 1995, 20(22): 2342-2344. 
[9] LEHRE T, JUNGFLEISCH B, SUNTZ R, et al. Size distribution of nanoscaled particles and gas temperatures from timeresolved laserinduced incandescence  [J]. Applied Optics, 2003, 42(12): 202-12030.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.