Please wait a minute...
J4  2013, Vol. 47 Issue (11): 2038-2045    DOI: 10.3785/j.issn.1008-973X.2013.11.023
    
Research on interface circuits of multiple piezoelectric generators
HUO Xin-xin1,2, CHU Jin-kui1,2,HAN Bing-feng1,2, YAO Fei1,2
1. Key Laboratory for Dalian University of Technology Precision & Non-traditional Machining of
Ministry of Education, Dalian University of Technology, Dalian 116023, China|2.Key Laboratory for Micro/Nano
Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To explore the output power performance of multiple piezoelectric generators which are connected in parallel mode and work cooperatively, four kinds of parallel-connection interface circuits for multiple piezoelectric generators were proposed based on the standard circuit and the synchronized switch harvesting on inductor (SSHI) circuit. The output power in these four kinds of interface circuits was theoretically derived and the influence on it by the phase difference among the exciting forces was studied. The results show that for piezoelectric generators connected in parallel mode, if the piezoelectric generators are rectified after parallel connection and link with standard/ SSHI circuit, the phase difference between exciting forces has effect on the output power, and the output power is decided by the phase difference,the interface circuit and the excitation frequency. If piezoelectric generators are connected in parallel after rectifier bridges and link with standard/SSHI circuit, the phase difference has no effect on the output power and in this situation, the output power is decided by both the interface circuit and the excitation frequency. Compared among the four kinds of interface circuits, a system consists of multiple piezoelectric generators which are connected in parallel after rectifier bridges and link with SSHI circuit has higher output power and wider frequency bandwidth, so its comprehensive results are more acceptable.



Published: 01 November 2013
CLC:     
  TK 01  
Cite this article:

HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators. J4, 2013, 47(11): 2038-2045.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.11.023     OR     http://www.zjujournals.com/eng/Y2013/V47/I11/2038


 基于多个压电换能器的接口电路

为了探究多压电换能器并联时的能量输出特性,以标准电路和同步电感电路(SSHI)为基础提出4种多压电换能器并联电路,对4种电路下的输出功率进行理论推导,并探讨激振力之间相位差对并联输出功率的影响.结果表明:如果多压电换能器采用先并联后整流的标准/SSHI电路,激振力之间相位差对输出功率有影响,并且最终的并联输出功率由相位差、激振频率及接口电路共同决定.如果多压电换能器采用先整流后并联的标准/SSHI电路,激振力之间相位差对并联输出功率没有影响,输出功率由激振频率和接口电路决定.对比4种接口电路,采用先整流后并联的SSHI接口电,输出功率峰值较高、带宽较宽,在4种电路中综合效果更好.

[1]POULIN G, SARRAUTE E, COSTA F. Generation of electrical energy for portable devices: comparative study of an electromagnetic and a piezoelectric system [J]. Sensors Actuators A:Physcial, 2004, 116(3): 46171.
[2] ROUNY S, WRIGHT P K. A piezoelectric vibration based generator for wireless electronics [J]. Smart Materials and Structures , 2004, 13(5): 113-142.
[3] DUTOIT N E, WARDLE B L, KIM S G. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters [J]. Integrated. Ferroelectrics, 2005, 71(1) : 12160.
[4] LEFEUVRE E, BADEL A, BENAYAD A, et al. A comparison between several approaches of piezoelectric energy harvesting [J]. Journal de Physique: An International Journal, 2005, 128(1): 17786.
[5] SHU Y C, LIEN I C. Analysis of power output for piezoelectric energy harvesting systems [J]. Smart Materials and Structures, 2006, 15(6): 1499512.
[6] GUYOMAR D, BADEL A, LEFEUVRE E. Toward energy harvesting using active materials and conversion improvement by nonlinear processing [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2005, 52(4): 58495.
[7] BADEL A, GUYOMAR D, LEFEUVRE E, et al. Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion[J]. Journal of Intelligent Material Systems and Structures,2005, 16(10): 889-901.
[8] BADEL A, GUYOMAR D, LEFEUVRE E,et al. Piezoelectric energy harvesting using a synchronized switch technique [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(8): 8319.
[9] MAKIHAR K, ONODA J, MIYAKAWA T. Low energy dissipation electric circuit for energy harvesting [J]. Smart Materials and Structures, 2006, 15(5): 14938.
[10] 阚君武,王淑云,彭少锋,等.多振子压电发电机的输出特性[J]. 光学精密工程,2011, 19(9): 210815.
KAN Jun-Wu, WANG Shu-Yun, PENG Shao-Feng, et al. Output performance of piezoelectric generators with multi-vibrators [J]. Optics and Precision Engineering, 2011, 19(9): 201815.
[11] LIEN I S, SHU Y C. Array of piezoelectric energy harvesters[C]∥SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. San Diego, California, USA:International Society for Optics and Photonics, 2011:79770k-79770K-9.
[12] HAGOOD N W, CHUNG W H, FLOTOW A V. Modelling of piezoelectric actuator dynamics for active structural control[J]. Journal of Intelligent Material Systems and Structures, 1990, 1(3): 32754.
[13] WANG Q M, CROSS L E, Constitutive equations of symmetrical triple layer piezoelectric benders\
[J\]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1999, 46(6): 1343-1351.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[7] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[8] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[9] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[10] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[11] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[12] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[13] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[14] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.
[15] WANG Lu-jun, LV Zheng-yu. Elevator traffic pattern fuzzy recognition based on
least squares support vector machine
[J]. J4, 2012, 46(7): 1333-1338.