Please wait a minute...
J4  2013, Vol. 47 Issue (3): 465-471    DOI: 10.3785/j.issn.1008-973X.2013.03.010
    
Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
ZHONG Shi-ying1,2, WU Xiao-jun3, CAI Wu-jun1, LING Dao-sheng1,
JIANG Zhu-jin1, WANG Shun-yu1
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University ,Hanzhou 310058,China;
2. Shenzhen Expressway Engineering Consultants Company Limited,  Shenzhen 518026, China;
3.Suzhou Xingang Comstruction Group, Sazhou 205011, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Horizontal sliding model tests for soft landing mechanisms were conducted to measure the slip characteristic for lunar lander after landing impact occurring in touchdown process. The model test facility, formed by transmission control system, towing cylinder and limiting displacement system, measuring system, model box system, was used to research the  slip characteristic under different landing velocities, footpad angles and landing points. The drive control system achieves any requirement horizontal sliding velocity|the cylinder and displacement restrictor system realizes the requirement pressure and depth|measuring system measures the sliding force, axial force, sliding velocity, displacement and footpad angle|and model box system compoundes the requirement test foundation bed. A series of tests were carried out under footpad level, depth 10 mm. The results show that linear relationship between sliding force and axial force is excellent, and their distribution is similar to National Aeronautics and Space Administration (NASA) results. So the horizontal sliding model tests device is reliable.



Published: 01 March 2013
CLC:     
  TU 43  
Cite this article:

ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing. J4, 2013, 47(3): 465-471.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.03.010     OR     http://www.zjujournals.com/eng/Y2013/V47/I3/465


月面软着陆足垫水平拖曳模型试验装置研制

为解决月球软着陆探测器在软着陆冲击完成到着陆完全稳定过程中的滑移特性问题,研发软着陆机构水平拖曳模型试验装置.该装置有传动控制系统、拖曳筒体的汽缸和限位器装置、量测系统、模型箱系统等,用于模拟软着陆过程中不同着陆速率、足垫冲击角度以及不同着陆地点下,软着陆机构水平滑移特性测试.由传动控制系统实现设定的水平拖曳速率|拖曳筒体的汽缸和限位器装置实现压力和刺入深度,量测系统对拖曳力、轴力、拖曳速率、刺入深度为和足垫转角进行测量,模型箱系统可配制任意要求的试验基床.开展了足垫水平、刺入深度10 mm的系列试验,结果表明:拖曳力与轴力呈现线性关系,两者分布与美国国家航空航天局(NASA)试验结果相似,试验装置性能可靠.

[1] 朱汪, 杨建中.月球探测器软着陆机构着陆腿模型与仿真分析[J].宇航学报,2008,29(6):1723-1728.
ZHU Wang, YANG Jian-zhong. Modeling and simulation of landing leg for the lunar landing gear system [J]. Journal of Astronautics, 2008,29(6):1723-1728.
[2] ZHENG Yong-chun, WANG Shi-jie, OUYANG Zi-yuan, et al. CAS-1 lunar soil stimulant[J]. Advance in Space Research, 2009, 43(3):448-454.
[3] 蒋明镜, 李立青.TJ-1模拟月壤的研制[J].岩土工程学报,2011,33(2):209-214.
JIANG Ming-jing, LI Li-qing. Development of TJ-1 lunar soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2011,33(2):209-214.
[4] 钟世英,凌道盛,吴晓君,等. 月壤岩土工程问题研究进展[J]. 浙江大学学报:工学版, 2012, 22(6): 741-743.
ZHONG Shi-ying, LING Dao-sheng, WU Xiao-jun, et al. Review on geotechnical behavior of lunar soil [J]. Journal of Zhejiang University:Engineering Science, 2012, 22(6): 741743.
[5] BRAIN M, WALTER B. Soil-tool interaction theories as they apply to lunar soil simulation [J]. Journal of Aerospace Engineering,1995, 8(2):88-99.
[6] KARAFIATH L. Friction between solids and simulated lunar soils in ultrahigh vacuum and its significance for the design of lunar roving vehicles [J]. Nbs Space Simulation,1970:225-244.
[7] WEIBLEN W, KOCKELMANN H, BURKARD H. Evaluation of different designs of wheel force transducers (part III) [J] . SAE Transactions,1999,108(2):1901-1912.
[8] GU Kan-feng, WEI Ying-zi,WANG Hong-guang, et al. Dynamic modeling and sliding mode driving control for lunar rover slip [C]∥ Proceedings of the International Conference on Integration Technology. Shenzhen: IEEE,2007:36-41.
[9] BEND S. Lunar module/LM/ soil mechanics [M]. [S. 1.]: Analytical Mechanics,1968.
[10] 吴晓君,钟世英,凌道盛,等.着陆器足垫垂直冲击模型试验研究[J].岩土力学,2012,22(4):12-20.
Wu Xiao-jun, ZHONG Shi-ying, LIN Dao-sheng,et al. Model test study on vertical impact of the space Lander footpad[J].Rock and Soil Mechanics, 2012,22(4):12-20.
[11] 张熇,柳忠尧,饶伟. 月面软着陆探测器地面力学试验方法研究[J]. 航天器工程, 2007,16(6):33-38.
ZHANG He, LIU Zhong-rao, RAO Wei. Study on methods for lunar lander dynamical experimentations[J]. Spacecraft Engineering, 2007, 16(6): 33-38.
[12] 龙铝波,卿启湘,文桂林,等. 基于ADAMS的着陆器软着陆稳定性仿真分析[J]. 工程设计学报,2010, 17(5):334-338.
LONG Lü-bo,QING Qi-xiang,WEN Gui-lin, et al. Simulation analysis of lander soft landings stability based on ADAMS[J]. Journal of Engineering Design, 2010, 17(5):334-338.
[13] 朱汪, 杨建中. 月球着陆器软着陆机构着陆稳定性仿真[J]. 宇航学报,2009,30(5): 1792-1796.
ZHU Wang, YANG Jian-zhong. Touchdown stability simulation of landing gear system for lunar lander[J]. Journal of Astronautics, 2009,30(5): 1792-1796.
[14] 蒋万松,黄伟,沈祖炜,等. 月球探测器软着陆动力学仿真[J]. 宇航学报,2011,32(3):462469.
JIANG Wan-song, HUANG Wei, SHEN Zu-wei, et al. Soft landing dynamics simulation for lunar explorer[J]. Journal of Astronautics, 2011,32(3):462-469.
[15] 林轻,聂宏,陈金宝,等. 月球着陆器软着陆冲击仿真[J]. 中国空间科学技术, 2011,10(5):70-76.
LIN Qing, NIE Hong, CHEN Jin-bao et.al. Soft landing impact simulation of lunar lander[J]. Chinese Space Science and Technology, 2011,10(5):70-76.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[12] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[13] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[14] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.
[15] WANG Lu-jun, LV Zheng-yu. Elevator traffic pattern fuzzy recognition based on
least squares support vector machine
[J]. J4, 2012, 46(7): 1333-1338.