Please wait a minute...
J4  2013, Vol. 47 Issue (7): 1232-1237    DOI: 10.3785/j.issn.1008-973X.2013.07.015
    
Spatial resolution and its calibration method for Brillouin scattering based distributed sensors
CUI He-liang1,2, ZHANG Dan1, SHI Bin1
1.School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China;2. Large Dam Safety
Supervision Center, State Electricity Regulatory Commission, Hangzhou 310014, China  
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Spatial resolution is one of the important parameters for Brillouin scattering based distributed optical fiber sensing. The results of constant tensile load test were analyzed, and the strain distributions of point-by-point fixed fiber measured by two different spatial resolution respectively were compared. Then the influence of spatial resolution on measured strain was analyzed. Two spatial resolution calibration methods, including 10%~90% step-function method and hot-spot method, and their applicability were discussed. The dissimilar-fiber-splicing method was proposed to calibrate the spatial resolution. Dissimilar-fiber-splicing means two variant peak frequency fibers are alternately spliced in series with segments of different length. The calibration experiment shows that dissimilar-fiber-splicing method is accurate, objective, and comparative.



Published: 01 July 2013
CLC:     
  0 437.2  
  TN 253  
Cite this article:

CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors. J4, 2013, 47(7): 1232-1237.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.07.015     OR     http://www.zjujournals.com/eng/Y2013/V47/I7/1232


 布里渊分布式传感的空间分辨率及标定方法

针对基于布里渊散射原理的分布式光纤传感技术的重要参数之一——空间分辨率,通过分析定荷拉伸试验的结果,对比2种不同空间分辨率下实测的定点拉伸光纤的应变分布,说明了空间分辨率对测量结果的影响,探讨标定空间分辨率的10%~90%温度台阶法和温度热点法及其适用性.提出异种光纤串法,即将2种不同峰值频率的光纤、按不同长度交替熔接而成的光纤串,通过分析光纤串的测量结果对空间分辨率进行标定.试验表明,与温度台阶法和温度热点法相比,异种光纤串法具有准确、客观、测试结果的可对比性强等特点.

[1] OHNO H, NARUSE H, KIHARA M, et al. Industrial application of the BOTDR optical fiber strain sensor [J]. Optical Fiber Technology, 2001, 7(1): 45-64.
[2] 施斌, 徐洪钟, 张丹, 等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J]. 岩石力学与工程学报, 2004, 23(3): 493-499.
SHI Bin, XU Hong-zhong, ZHANG Dan, et al. Feasibility study on application of BOTDR to health monitoring for large infrastructure engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(3): 493-499.
[3] 金伟良, 毛江鸿, 何勇. 混凝土内部应变分布式光纤实时检测方法及试验研究[J]. 土木建筑与环境工程, 2011, 33(1): 1-6.
JIN Wei-liang, MAO Jiang-hong, HE Yong. Experimental analysis on real-time distributed strain measurement in concrete [J]. Journal of Civil Architectural and Environmental Engineering, 2011, 33(1): 16.
[4] 刘永莉, 孙红月, 于洋, 等. 抗滑桩内力的BOTDR监测分析[J]. 浙江大学学报:工学版, 2012, 46(2): 243-249.
LIU Yong-li, SUN Hong-yue, YU Yang, et al. BOTDR monitoring analysis of anti-sliding pile internal force [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(2): 243-249.
[5] 隋海波, 施斌, 张丹,等. 边坡工程分布式光纤监测技术研究[J]. 岩土力学与工程学报,2008,22(增2): 37253731.
SUI Hai-bo, SHI bin, ZHANG Dan, et al. Study on distributed optical fiber sensor-based monitoring for slope engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 22(suppl.2): 3725-3731.
[6] BAO X Y, CHEN L. Recent progress in Brillouin scattering based fiber sensors [J]. Sensors, 2011(11): 4152-4187.
[7] 张在宣, 金尚忠, 王剑锋, 等. 分布式光纤拉曼光子温度传感器的研究进展[J]. 中国激光, 2010, 37(11): 27492761.
ZHANG Zai-xuan, JIN Shang-zhong, WANG Jian-feng, et al. Distributed optical fiber Raman photon sensor research review [J]. Chinese Journal of Lasers, 2010, 37(11): 2749-2761.
[8] 刘, 邹健, 黄尚廉. 分布式光纤温度传感器系统分辨率确定的理论分析[J]. 光子学报, 1996, 25(7): 635-639.
LIU Yan, ZOU Jian, HUANG Shang-lian. Theoretic analysis for determining the resolutions of distributed optical fiber temperature sensing system [J]. ACTA Photonica Sinica, 1996, 25(7): 635-639.
[9] ZHANG Dan, XU Hong-zhong, SHI Bin, et al. Brillouin power spectrum analysis for partially uniformly strained optical fiber [J]. Optics and Lasers in Engineering, 2009, 47(9): 976-981.
[10] 张旭苹, 王峰, 路元刚. 基于布里渊效应的连续分布式光纤传感技术[J]. 激光与光电子学进展, 2009, 46(11): 14-20.
ZHANG Xu-ping, WANG Feng, LU Yuan-gang. Fully distributed optical fiber sensor based on Brillouin effect [J]. Laser and Optoelectronics Progress, 2009, 46(11): 14-20.
[11] BAO X Y, BROWN A, DEMERCHANT M, et al. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10 ns) pulses [J]. Optics Letters, 1999, 24(8): 510-512.
[12] GALNDEZ C A, LPEZ-HIGUERA J M. Decimeter spatial resolution by using differential preexcitation BOTDA pulse technique [J]. IEEE Sensors Journal, 2011, 11(10): 2343-2348.
[13] BROWN A, COLPITTS B, BROWN K. Distributed sensor based on dark-pulse Brillouin scattering [J]. IEEE Photonics Technology Letters, 2005, 17(7): 1501-1503.
[14] FOALENG S M, TUR M, BEUGNOT J C, et al. High spatial and spectral resolution long-range sensing using Brillouin echoes [J]. IEEE Journal of Lightwave Technology, 2010, 28(20): 2993-3003.
[15] KISHIDA K, LI C H, LIN S B, et al. Pulsed pre-pump method to achieve centimeter order spatial resolution in Brillouin distributed measuring technique [J]. Technical Report of IEICE OFT, 2004, 104(341): 15-20.
[16] KOYAMADA Y, SAKAIRI Y, TAKEUCHI N, et al. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry [J]. IEEE Photonics Technology Letters, 2007, 19(23): 1910-1912.
[17] HARTOG A H, LEACH A P, GOLD M P. Distributed temperature sensing in solid-core fibers [J]. Electronics Letters, 1985, 21(23): 1061-1062.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[10] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[11] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[12] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[13] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[14] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.
[15] DAI Xing-hu, QIAN Yun-tao, TANG Feng-xian, JU Bin. Figure caption based MRI image detection from
online biological literature
[J]. J4, 2012, 46(7): 1307-1313.