Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1593-1598    DOI: 10.3785/j.issn.1008-973X.2013.09.012
    
Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
WANG Yu-qiang1,ZHANG Kuan-di2,CHEN Xiao-dong1
1. Department of Hydraulic Engineering,Zhejiang University of  Water Resources and Electric Power,
Hangzhou 310018,China ;2.College of Water Conservancy and Architectural Engineering, Northwest
Agricultural and Forestry University, Yangling 712100,China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The shear-slip behavior of adhesive/concrete interface was simulated by using the spring element with a damage-type law from the push-out experiment data. A three-dimensional nonlinear finite element model for the adhesive bonded steel-concrete composite beams was proposed. Based on the simulation results, the bonding stress distribution and the debonding process in the adhesive/concrete interface were revealed.  Adhesive with less value of elastic modulus makes the shear transformation more evenly, but it may induce a bigger relative slip between the concrete slab and the steel girder, which may impair the carrying capacity of the composite beams. Numerical results reveal that the debonding failure is a typical brittle destroy process with a catastrophic failure of the composite beams and must be paid enough attention during the design process.



Published: 01 September 2013
CLC:     
  TU 389  
Cite this article:

WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams. J4, 2013, 47(9): 1593-1598.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.09.012     OR     http://www.zjujournals.com/eng/Y2013/V47/I9/1593


胶黏钢-混凝土组合梁的界面行为数值分析

根据推出的试验测试数据,将黏胶/混凝土界面的剪切-滑移行为用具备损伤本构关系的弹簧单元来模拟,建立胶黏钢-混凝土组合梁的三维非线性有限元模型.基于模拟结果,揭示了组合梁黏胶/混凝土界面的黏结应力分布规律及脱胶剥离过程.分析结果表明:弹性模量小的黏胶剂更有利于界面的剪力均匀传递,但会引起混凝土板和钢梁间产生大的相对滑动,导致结构整体承载力降低.胶黏组合梁的界面脱胶剥离是一个突发的典型脆性破坏过程,会产生灾难性后果,在设计过程中需引起足够重视.

[1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3-8.
NIE Jian-guo,YU Zhi-wu. Research and practice of composite steel-concrete beams in China [J]. China Civil Engineering Journal, 1999, 32(2): 3-8.
[2] 蒋秀根, 剧锦三, 傅向荣. 考虑滑移效应的钢-混凝土组合梁弹性应力计算[J]. 工程力学, 2007, 24(1): 143-146.
JIANG Xiu-gen,JU Jin-san, FU Xiang-rong. Analysis of elastic stress of composite steel-concrete beams considering slip effect[J]. Engineering Mechanics, 2007, 24(1): 143-146.
[3] SWAMY R N, JONES R, BLOXHAM J W. Structural behaviour of reinforced concrete beams strengthened by epoxy-boned steel plates[J]. Structural Engineer: Part A, 1987, 65(2): 59-68.
[4] LU X Z, TENG J G, YE L P, JIANG J J. Bond-slip models for FRP sheets/plates bonded to concrete[J]. Engineering Structures, 2005, 27(6): 920-937.
[5] FERRIER E, QUIERTANT M, BENZARTI K, et al. Influence of the properties of externally bonded CFRP on the shear behavior of concrete/composite adhesive joints[J]. Composites Part B: Engineering, 2010, 41(5): 354-362.
[6] YUAN H, TENG J G, SERACINO R, et al. Full-range behavior of FRP-to-concrete bonded joints[J]. Engineering Structures, 2004, 26(5): 553-565.
[7] NORDIN H, TLJSTEN B. Testing of hybrid FRP composite beams in bending[J]. Composites Part B: Engineering, 2004, 35(1): 27-33.
[8] BOUAZAOUI L, PERRRNOT G, DELMAS Y, et al. Experimental study of bonded steel concrete composite structures[J]. Journal of Constructional Steel Research, 2007, 63: 1268-1278.
[9] THOMANN M, LEBET J P. A mechanical model for connections by adherence for steel-concrete composite beams[J]. Engineering Structures, 2008, 30(1): 163-173.
[10] ZHAO G, LI A. Numerical study of a bonded steel and concrete composite beam[J]. Computers and Structures, 2008, 86: 18301838.
[11] SI LARBI A, FERRIER E, JURKIEWIEZ B, et al . Static behaviour of steel concrete beam connected by bonding[J]. Engineering Structures, 2007, 29(6): 1034-1042.
[12] BERTHET J F, YURTDAS I, DELMAS Y, et al. Evaluation of the adhesion resistance between steel and concrete by push out test[J]. International Journal of Adhesion and Adhesives, 2011, 31(2): 75-83.
[13] Eurocode 4. Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings[S]. London :European Committee for Standardization (CEN), 2004.
[14] CARREIRA D J, CHU K H. Stress-strain relationship for plain concrete in compression[J]. ACI Journal Proceedings, 1985, 82(6): 797-804.
[15] ACI 318R-08. Building code requirements for structural concrete and commentary[S]. Farmington Hills, MI :American Concrete Institute, 2008.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[9] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[10] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[11] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[12] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[13] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[14] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.
[15] WANG Lu-jun, LV Zheng-yu. Elevator traffic pattern fuzzy recognition based on
least squares support vector machine
[J]. J4, 2012, 46(7): 1333-1338.