1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Zhejiang Electric Power Design Institute, Hangzhou 310012, China
For jacket supported offshore wind turbines (OWTs), numerical calculations and analysis were performed to investigate the dynamic responses of the whole structures under extreme cyclic loadings of typhoon condition. The series of pile-soil interaction models (p-y, t-z, Q-z) in the code of American Petroleum Institute (API), an elastoplastic t-z model considering the cyclic degradation of strength and stiffness axially in the pile-soil interface as well as an elastoplastic p-y model representing the lateral behaviors were used in the numerical simulations. Results show that the largest proportion of the anti-overturning moment at the mudline of jacket supported OWT is provided by the t-z spring. A negative contribution to the anti-overturning moment may be caused by the p-y spring, and the main function of p-y spring is to resist the horizontal loadings. The contribution from the Q-z spring is small and negligible. The rotation response at the top of jacket foundation may increase obviously with the consideration of the cyclic degradation effect of t-z spring. Considering the coupling degradation effects of the t-z and p-y springs, the translation of the jacket foundation will be more obvious and the displacement response at the top of the foundation will increase significantly. Thus the effects of the pile-soil cyclic degradation should be considered adequately in the engineering design.
Fig.1Schematic diagram of model for jacket supported offshore wind turbine
模型参数
数值
内摩擦角φ/(°)
39
地基弹性模量ηh/(N·m?3)
3.4×107
p-y曲线形状参数hs
0.1
刚度衰减参数αd
0.001
有效重度γ'/(KN·m?3)
10.4
Tab.1Parameters of elastoplastic p-y model
Fig.2Elastoplastic t-z model considering cyclic degradation
模型参数
数值
模型参数
数值
δ/(°)
21.5
B
2.5
z50/mm
0.5
a
0.04
h
4.0
b
0.5
τr/τu0
0.317
Tab.2Parameters of elastoplastic t-z model after calibration
Fig.3Comparison of simulation results of t-z model and interface shear test results under constant normal stiffness
计算工况
p-y模型
t-z模型
Q-z模型
1
API
API
API
2
API
弹塑性
API
3
弹塑性
API
API
4
弹塑性
弹塑性
API
Tab.3Calculation cases for different pile-soil interaction situations
模型
φ/(°)
δ/(°)
Nq
A
γ'/(KN·m?3)
p-y模型
39
?
?
0.9
10
t-z模型
?
21.5
?
?
10
Q-z模型
?
?
20
?
10
Tab.4Parameters of p-y, t-z, Q-z models from API code
几何参数
数值
转子、轮毂、机舱集中质量/t
466.8
塔筒长度/m
73.0
塔筒底部直径/m
5.5
导管架部分高度/m
44.6
导管架顶部根开/m
12.0
导管架底部根开/m
22.0
桩长/m
50.0
桩径/m
2.0
桩壁厚/mm
30.0
Tab.5Parameters of jacket supported offshore wind turbine
Fig.4Schematic diagram of moment caculatuion of jacket foundation at mudline
Fig.5Time history of contribution of different springs to anti-overturning moment at mudline
Fig.6Time history chart of rotation response at top of jacket foundation top
Fig.8Time history chart of vertical displacement response at top of jacket foundation
Fig.7Time history chart of horizontal displacement response at top of jacket foundation
[1]
林楚 海上风电坐稳世界第三"十三五"目标有望完成[J]. 电力系统装备, 2017, (9): 18- 21 LIN Chu The goal of stabilizing offshore wind power in the 13th Five-Year Plan is expected to be fulfilled[J]. Equipment Electric Power System Equipment, 2017, (9): 18- 21
[2]
ABHINAV K A, SAHA N Stochastic response of jacket supported offshore wind turbines for varying soil parameters[J]. Renewable Energy, 2017, 101: 550- 564
doi: 10.1016/j.renene.2016.09.019
[3]
ACHMUS M, ABDEL-RAHMAN K, SCHAEFER D, et al. Capacity degradation method for driven steel piles under cyclic axial loading [C]// Proceedings of the Twenty-seventh International Ocean and Polar Engineering Conference. San Francisco: [s. n.], 2017: 362-368.
[4]
罗超, 曹文胜 台风对我国海上风电开发的影响[J]. 能源与环境, 2013, (3): 2- 3 LUO Chao, CAO Wen-shen The influence of typhoon on offshore wind power development in China[J]. Energy and Environment, 2013, (3): 2- 3
doi: 10.3969/j.issn.1672-9064.2013.03.001
[5]
American Petroleum Institute (API). Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design: RP 2A-WSD [S]. Washington: API Publishing Services, 2000: 56-67.
[6]
WEI S, PARK H C, CHUNG C W, et al Soil-structure interaction on the response of jacket-type offshore wind turbine[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2 (2): 139- 148
doi: 10.1007/s40684-015-0018-7
[7]
ABHINAV K A, SAHA N Nonlinear dynamical behavior of jacket supported offshore wind turbines in loose sand[J]. Marine Structures, 2018, 57: 133- 151
doi: 10.1016/j.marstruc.2017.10.002
[8]
ABHINAV K A, SAHA N Coupled hydrodynamic and geotechnical analysis of jacket offshore wind turbine[J]. Soil Dynamics and Earthquake Engineering, 2015, 73: 66- 79
doi: 10.1016/j.soildyn.2015.03.002
[9]
Det Norske Veritas. Design of offshore wind turbine structures: DNV-OS-J101 [S]. Oslo: Det Norske Veritas, 2013: 173-174.
[10]
黄茂松, 马昊, 李森, 等 软黏土中水平受荷桩的静力和循环p–y曲线 [J]. 岩土工程学报, 2017, 39 (增2): 9- 12 HUANG Mao-song, MA Hao, LI Sen, et al Static and cyclic p-y curves for laterally loaded piles in soft clay [J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (增2): 9- 12
[11]
朱斌, 熊根, 刘晋超, 等 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35 (10): 1807- 1815 ZHU Bin, XIONG Gen, LIU Jin-chao, et al Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (10): 1807- 1815
[12]
刘红军, 张冬冬, 吕小辉, 等 循环荷载下饱和粉土地基单桩水平承载特性试验研究[J]. 中国海洋大学学报: 自然科学版, 2015, 45 (1): 76- 82 LIU Hong-jun, ZHANG Dong-dong, LV Xiao-hui, et al Model tests on lateral bearing capacity of single piles under cyclic loads in saturated silt[J]. Periodical of Ocean University of China, 2015, 45 (1): 76- 82
[13]
ACHMUS M, KUO Y S, ABDELRAHMAN K Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36 (5): 725- 735
doi: 10.1016/j.compgeo.2008.12.003
[14]
胡安峰, 张光建, 贾玉帅, 等 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. 浙江大学学报: 工学版, 2014, 48 (4): 721- 726 HU An-feng, ZHANG Guang-jian, JIA Yu-shuai, et al Application of degradation model in analysis of cumulative lateral displacement of monopile foundation[J]. Journal of Zhejiang University: Engineering Science,, 2014, 48 (4): 721- 726
[15]
苏栋 弹塑性p–y模型及非线性地基梁的增量有限元法 [J]. 岩土工程学报, 2012, 34 (8): 1469- 1474 SU Dong Elastoplastic p-y model and incremental finite element method for nonlinear foundation beams [J]. Journal of Geotechnical Engineering, 2012, 34 (8): 1469- 1474
[16]
ZHOU W J, WANG L Z, GUO Z, et al. A novel t-z model to predict the pile responses under axial cyclic loadings [J]. Computers and Geotechnics, 2019, 112: 120-134.
[17]
苏栋, 赵鹏, 高翔, 等 考虑泊松效应影响的弹塑性荷载传递模型[J]. 岩土力学, 2015, 36 (10): 2799- 2803 SU Dong, ZHAO Peng, GAO Xiang, et al Elastoplastic load transfer model considering Poisson effect[J]. Rock and Soil Mechanics, 2015, 36 (10): 2799- 2803
[18]
SU D, YAN W M A multidirectional p–y model for lateral sand-pile interactions [J]. Soils and Foundations, 2013, 53 (2): 199- 214
doi: 10.1016/j.sandf.2013.02.002
[19]
DAFALIAS Y F Bounding surface plasticity. I: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112 (9): 966- 987
doi: 10.1061/(ASCE)0733-9399(1986)112:9(966)
[20]
LI X S A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52 (3): 173- 186
doi: 10.1680/geot.2002.52.3.173
[21]
AIREY D W, AL-DOURI R H, POULOS H G Estimation of pile friction degradation from shear box tests[J]. Geotechnical Testing Journal, 1992, 15 (4): 388- 392
doi: 10.1520/GTJ10253J
[22]
TABUCANON J T, AIREY D W, POULOS H G Pile skin friction in sands from constant normal stiffness tests[J]. Geotechnical Testing Journal, 1995, 18 (3): 350- 364
doi: 10.1520/GTJ11004J
[23]
JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development: technical report NREL/TP-500-38060 [R]. Colorado: U. S. National Renewable Energy Laboratory, 2009: 12-13.