Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 757-766    DOI: 10.3785/j.issn.1008-973X.2021.04.019
    
Integrated seismic response of monopile supported offshore wind turbines
Ren-qiang XI1,2(),Xiu-li DU1,*(),Pi-guang WANG1,Cheng-shun XU1,Kun XU1
1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
Download: HTML     PDF(2685KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The 5 MW wind turbine created by National Renewable Energy Laboratory (NREL) was taken as the prototype in order to analyze the dynamic behavior of monopile supported offshore wind turbines (OWTs) excited by the combination of wind, wave and earthquake. Then parameters of the wave spectrum were determined by the statistical relationship between wind and wave assuming that wind and earthquake were independent events. The FAST code was modified to simulate the soil-structure interaction, and the seismic response of OWTs was analyzed by using aero-servo-hydro-elastic coupled method. The running, park and emergency shutdown operational conditions were included. Results show that operational conditions significantly influence the deformations and internal forces of the support structure of wind turbines, and the principles are associated with the intensity of earthquakes. The oscillation velocity of the blade is considerably influenced by earthquakes. The amplitudes of shear and bending moment of critical section for the support structure may exceed those excited by extreme wind-wave under the combined excitation of wind, wave and seismic.



Key wordsmonopile supported offshore wind turbine      combined excitation of wind-wave-earthquake      statistical relation between wind and wave      soil-structure interaction      seismic response     
Received: 03 April 2020      Published: 07 May 2021
CLC:  TK 89  
Fund:  国家自然科学基金资助项目(51808061,51722801);国家重点研发计划资助项目(2018YFC1504302)
Corresponding Authors: Xiu-li DU     E-mail: xirenqiang@cczu.edu.cn;duxiuli@bjut.edu.cn
Cite this article:

Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.019     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/757


单桩式海上风力机整体化地震反应

为了探讨风-波浪-地震共同作用下单桩式海上风机(OWTs)的动力行为,以National Renewable Energy Laboratory(NREL)5 MW风力发电机为研究对象,将风、地震作为独立事件,根据风-波浪统计关系确定波浪谱参数. 改进FAST软件以模拟土-结相互作用,考虑停机、运行和应急停机3种工况,采用气动-伺服-水动-弹性耦合方法分析海上风机地震响应. 算例表明,工作状态显著影响海上风机支撑结构的运动和内力,规律与地震强弱有关;地震动显著影响叶片挥舞振动速度;在风-波浪-地震的共同作用下,海上风机支撑结构危险截面剪力和弯矩峰值超过极端风-波浪作用效应.


关键词: 单桩式海上风机,  风-波浪-地震共同作用,  风-波浪统计关系,  土-结相互作用,  地震响应 
Fig.1 NREL 5 MW monopile supported OWTs
Fig.2 Element of blade for NREL 5 MW OWTs
Vhub /(m·s?1 HS /m TP /s Vhub /(m·s?1 HS /m TP /s
0 1.0 6.0 15 2.0 6.2
5 1.1 5.8 18 2.4 6.7
11 1.5 5.8 21 2.9 7.0
13 1.8 5.9 24 3.4 7.8
Tab.1 Empirical relationship between mean wind speed at hub-height and wave
Fig.3 Soil layer and parameters of typical site
序号 地震 所选分量 PGA /g SaT1)/g 序号 地震 所选分量 PGA /g SaT1)/g
1 Kocaeli,1999 ARC090 0.22 0.05 15 Superstition Hills,1987 POE360 0.30 0.11
2 Duzce,1999 BOL000 0.73 0.15 16 Cape Mendocino,1992 RIO270 0.38 0.05
3 Loma-Prieta,1989 CAP000 0.50 0.06 17 Kobe,1995 SHI000 0.24 0.10
4 Chi-Chi,1999 CHY101E 0.28 0.38 18 Friuli,1976 TMZ000 0.35 0.03
5 Imperial-Valley,1979 DLT262 0.21 0.16 19 Landers,1992 YER270 0.25 0.12
6 Kocaeli,1999 DZC180 0.31 0.18 20 Manjil,1990 184327 0.27 0.17
7 Imperial-Valley,1979 E11140 0.36 0.15 21 Darfield,2010 CN26W 0.19 0.34
8 Loma-Prieta,1989 G03090 0.36 0.12 22 El-Mayor,2010 CXO090 0.18 0.22
9 Hector,1999 HEC090 0.34 0.08 23 Duzce,1999 DZC270 0.27 0.13
10 Superstition Hills,1987 ICC090 0.26 0.13 24 El-Mayor,2010 GEO000 0.27 0.35
11 Northridge,1994 LOS000 0.41 0.11 25 Darfield,2010 HCS89W 0.15 0.22
12 Northridge,1994 MUL009 0.42 0.10 26 Chi-Chi,1999 TCU070N 0.16 0.27
13 Kobe,1995 NIS000 0.51 0.07 27 Chi-Chi,1999 TCU109N 0.16 0.36
14 SanFernando,1971 PEL090 0.21 0.09 ? ? ? ? ?
Tab.2 Input ground motions and their engineering parameters
振型 f0
本文模型 文献[24]模型
前后向1阶 0.242 0.248
前后向2阶 1.568 1.546
侧向1阶 0.244 0.246
侧向2阶 1.519 1.533
Tab.3 Natural frequencies for support structure of NREL 5 MW monopile supported OWTs
Fig.4 Modes of NREL 5 MW OWTs in fore-aft direction
组合 Vhub /(m·s?1 HS /m TP /s 地震 运行状态
LC-1 0 1.0 6.0 参与 停机
LC-2 11 1.5 5.8 参与 运行
LC-3 11 1.5 5.8 参与 应急停机
Tab.4 Loading combinations of wind-wave-earthquake
Fig.5 Tower-top acceleration of OWTs when earthquake is seismic record DZC
Fig.6 Emergency shutdown of OWTs when earthquake is seismic record DZC
Fig.7 Dynamic response of OWTs when earthquake is seismic record DZC
Fig.8 Tower-top acceleration of OWTs when earthquake is seismic record CHY
Fig.9 Dynamic response of OWTs when earthquake is seismic record CHY
Fig.10 Mudline shear forces amplitudes for support structure of OWTs
Fig.11 Relation between mudline bending moment of support structure and acceleration response spectrum of earthquakes
Fig.12 Mudline bending moment amplitudes for support structure of OWTs with different operational conditions
Fig.13 Tower-top displacement amplitudes of OWTs with different operational conditions
Fig.14 Tower-top acceleration amplitudes of OWTs with different operational conditions
Fig.15 Velocity time history for blade-tip of OWTs
Fig.16 Amplitudes of blade-tip velocity increment of OWTs
Fig.17 Response spectrum and time history of input ground motion
Fig.18 Response amplitude of support structure for OWTs
Fig.19 Mudline internal forces amplitudes for support structure of OWTs
[1]   ARANY L, BHATTACHARYA S, ADHIKARI S, et al An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models[J]. Soil Dynamics and Earthquake Engineering, 2015, 74: 40- 45
doi: 10.1016/j.soildyn.2015.03.007
[2]   Global Wind Energy Council. Global Wind Report: annual market update 2019 [EB/OL]. [2020-03-24]. https://www.gwec.net/.
[3]   徐龙军, 何晓云, 谢礼立 海上风电工程基础结构抗震性能研究[J]. 地震工程与工程振动, 2012, 32 (3): 1- 7
XU Long-jun, HE Xiao-yun, XIE Li-li On seismic performance of offshore wind turbine foundation and structures[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32 (3): 1- 7
[4]   CARSWELL W, ARWADE S R, DEGROOT D J, et al Natural frequency degradation and permanent accumulated rotation for offshore wind turbine monopiles in clay[J]. Renewable Energy, 2016, 97: 319- 330
doi: 10.1016/j.renene.2016.05.080
[5]   KIM D H, LEE S G, LEE I K Seismic fragility analysis of 5 MW offshore wind turbine[J]. Renewable Energy, 2014, 65: 250- 256
doi: 10.1016/j.renene.2013.09.023
[6]   ANASTASOPOULOS I, THEOFILOU M Hybrid foundation for offshore wind turbines: environmental and seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2016, 80: 192- 209
doi: 10.1016/j.soildyn.2015.10.015
[7]   WANG P, ZHAO M, DU X, et al Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 47- 57
doi: 10.1016/j.soildyn.2018.04.028
[8]   DE RISI R, BHATTACHARYA S, GODA K Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records[J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 154- 172
doi: 10.1016/j.soildyn.2018.03.015
[9]   WANG X, ZENG X, YANG X, et al Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modeling[J]. Applied Energy, 2019, 235: 1335- 1350
doi: 10.1016/j.apenergy.2018.11.057
[10]   ALI A, RISI R D, SEXTOS A, et al Seismic vulnerability of offshore wind turbines to pulse and non-pulse records[J]. Earthquake Engineering and Structural Dynamics, 2020, 49 (1): 24- 50
doi: 10.1002/eqe.3222
[11]   ISHIHARA T, SARWAR M W. Numerical and theoretical study on seismic response of wind turbines [C]// 2008 European Wind Energy Conference and Exhibition. Brussels: [s.n.], 2008.
[12]   WANG L, ZHANG Y Influence of simplified models on seismic response analysis of wind turbine towers[J]. Applied Mechanics and Material, 2011, 94-96: 369- 374
doi: 10.4028/www.scientific.net/AMM.94-96.369
[13]   徐磊, 李德源, 莫文威, 等 基于非线性气弹耦合模型的风力机柔性叶片随机响应分析[J]. 振动与冲击, 2015, 34 (10): 20- 27
XU Lei, LI De-yuan, MO Wen-wei, et al Random response analysis for flexible blade of a wind turbine based on nonlinear aero-elastic coupled model[J]. Journal of Vibration and Shock, 2015, 34 (10): 20- 27
[14]   ZHENG X Y, LI H, RONG W, et al Joint earthquake and wave action on the monopile wind turbine foundation: an experimental study[J]. Marine Structures, 2015, 44: 125- 141
doi: 10.1016/j.marstruc.2015.08.003
[15]   WANG W, GAO Z, LI X, et al Model test and numerical analysis of a multi-pile offshore wind turbine under seismic, wind, wave, and current loads[J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139 (3): 1- 17
[16]   YANG Y, LI C, BASHIR M, et al Investigation on the sensitivity of flexible foundation models of an offshore wind turbine under earthquake loadings[J]. Engineering Structures, 2019, 183: 756- 769
doi: 10.1016/j.engstruct.2019.01.050
[17]   ZUO H, BI K, HAO H, et al Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 151- 167
doi: 10.1016/j.soildyn.2019.03.008
[18]   YANG Y, MUSA B, CHUN L, et al Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine[J]. Renewable Energy, 2020, 157: 1171- 1184
doi: 10.1016/j.renene.2020.05.077
[19]   JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development [R/OL]. (2009-02-01) [2016-11-12]. https://www.nrel.gov/docs/fy09osti/38060.pdf.
[20]   JONKMAN J M, BUHL M L. FAST user’s guide [R/OL]. (2005-08-12) [2017-03-10]. https://www.nrel.gov/docs/fy06osti/38230.pdf.
[21]   PROWELL I, ELGAMAL A, UANG C M, et al Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects[J]. Wind Energy, 2014, 17 (7): 997- 1016
doi: 10.1002/we.1615
[22]   JONKMAN J, MUSIAL W. Offshore code comparison collaboration for IEA Wind, Task 23 offshore wind technology and deployment [R/OL]. (2010-03-31). [2017-06-10]. https://www.nrel.gov/docs/fy11osti/48191.pdf.
[23]   International Electrotechnical Commission. Wind turbines Part 3: design requirements for offshore wind turbines: IEC 61400-3 [S]. Geneva, Switzerland: IEC, 2009.
[24]   JONKMAN J B. TurbSim user’s guide: Version 1.50 [R/OL]. (2009-09-01). [2017-07-20]. https://www.nrel.gov/docs/fy09osti/46198.pdf.
[25]   BREDMOSE H, LARSEN S E, MATHA D, et al. Collation of offshore wind wave dynamics [R/OL]. (2012-11-30) [2017-03-06]. https://orbit.dtu.dk/en/publications/collation-of-offshore-windwave-dynamics-marine-renewables-infrast.
[26]   LI Q, YANG W An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake[J]. Ocean Engineering, 2013, 72: 241- 256
doi: 10.1016/j.oceaneng.2013.07.001
[27]   ASAREH M A, SCHONBERG W, VOLZ J Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines[J]. Renewable Energy, 2016, 86: 49- 58
doi: 10.1016/j.renene.2015.07.098
[28]   YANG Y, YE K, LI C, et al Dynamic behavior of wind turbines influenced by aerodynamic damping and earthquake intensity[J]. Wind Energy, 2018, 21 (1): 1- 17
doi: 10.1002/we.2140
[29]   ARANY L, BHATTACHARYA S, MACDONALD J H G, et al Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 18- 32
doi: 10.1016/j.soildyn.2015.12.011
[30]   PASSON P. Derivation and description of the soil-pile interaction models [R/OL]. (2013-08-01) [2018-01-22]. https://www.nrel.gov/forum/wind/viewtopic.php? topic-Distributed Spring Model for Monopile.
[31]   CARSWELL W, JOHANSSON J, L?VHOLT F, et al Foundation damping and the dynamics of offshore wind turbine monopiles[J]. Renewable Energy, 2015, 80: 724- 736
doi: 10.1016/j.renene.2015.02.058
[32]   PROWELL I, ELGAMAL A, UANG C, et al. Estimation of seismic load demand for a wind turbine in the time domain [R/OL]. (2010-03-01) [2017-05-26]. https://www.nrel.gov/docs/fy10osti/47536.pdf.
[33]   YUAN C, CHEN J, LI J, et al Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads[J]. Renewable Energy, 2017, 113: 1122- 1134
doi: 10.1016/j.renene.2017.06.068
[34]   DU X, WANG P, ZHAO M Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain[J]. Ocean Engineering, 2014, 85: 44- 53
doi: 10.1016/j.oceaneng.2014.04.031
[35]   HANSEN M O L, S?RENSEN J N, VOUTSINAS S, et al State of the art in wind turbine aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2006, 42 (4): 285- 330
doi: 10.1016/j.paerosci.2006.10.002
[1] Yang QU,Yong-feng LUO,Zhao-chen ZHU,Qing-long HUANG. Modal stiffness method for seismic response analysis of latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1068-1077.
[2] Wei WANG,Shang-xin GAO,Ai-qun LI,Xing-xing WANG. Seismic responses of disc spring isolated-single degree of freedom system based on asymmetric model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1095-1105.
[3] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[4] Shuai LIU,Chao PAN,Zhi-guang ZHOU. Seismic performance and parametric influences of damping-coupled wall system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 492-502.
[5] XU Jun, LI Ying-min, YANG Xu-yao, HU Xiao-ping. Seismic response of overhead catenary system in high-intensity seismic zones under multi-support excitations[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1575-1582.
[6] LEI Yan-yun, XIE Xu. Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1926-1934.
[7] HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao. Modes of additional attenuation of Gmax and its influence on seismic site response[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1170-1179.
[8] YAO Xiao-wen, JIANG Jian-qun. Correlation between ground motion intensity measures and seismic response of high arch dam[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 254-261.
[9] ZHANG Yong-le, JIANG Jian-qun, LIU Jia-jin, WANG Zhen-yu. Seismic damage assessment of reinforced concrete structure and
its seismic design
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1294-1300.
[10] HU Xiu-Jing, CA Yuan-Jiang, XU Chang-Jie. Dynamic response factor for rocking vibration of embedded
foundation in saturated soil
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 935-941.
[11] TUN Yu-Hua, LOU Wen-Juan. Semi-analytical solution of elastic circular arch under horizontal random seismic excitation[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 156-159+165.