Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 870-878    DOI: 10.3785/j.issn.1008-973X.2020.05.004
Civil Engineering, Traffic Engineering     
Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station
Jie LAI1(),Yun LIU1,2,*(),Jian-ping XIN3,Wei WANG1,Chen-qiang GAO1,Hai-bo ZHU1
1. College of Combat Support, Rocket Force University of Engineering, Xi’an 710025, China
2. Faculty of Architectural and Enviromental Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
3. 95356 Troops, Hengyang 421800, China
Download: HTML     PDF(1741KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Shaking table test and numerical analysis were carried out on the reinforced slope at Dali West Railway Station in YunNan province, China, for obtaining the bending moment of double-row anti-slide piles, the axial force of anchors, the acceleration response and the ultimate failure of the reinforced slope. Results show that the acceleration response of the slope is related to the different relative elevations of measuring points, which could be represented as the higher the relative elevation of measuring points, the more obvious the acceleration response. The dynamic characteristics and the law of acceleration response of rocks and soils within the slope will be changed when cracks appear in the slope. The bending moment distribution of anti-slide piles triggered by earthquake is close to the parabola shape, the maximum value of which would appear near the boundary between rock and soil. The bending moment of the anti-slide piles increases nonlinearly with the increment of the peak ground acceleration (PGA) of input seismic waves. The dynamic axial force of the bolt at the peak time in the earthquake (4 m/s2) is three times more than the one in the static condition, and the seismic action is the decisive factor for the axial force of the bolt. Based on the action of the bolt, the ultimate failure surface of the slope is located in the deep part of the slope 2#, and the location of the failure surface is composed of the sliding failure in the upper-middle body and the top-over failure within the lower body of the slope 2#.



Key wordsshaking table test      anti-slide pile      anchor      bending moment      failure surface     
Received: 16 April 2019      Published: 05 May 2020
CLC:  P 642.2  
Corresponding Authors: Yun LIU     E-mail: 513516059@qq.com;2360605055@qq.com
Cite this article:

Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.004     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/870


大理西站支护边坡振动台试验及数值模拟

以云南省大理西站支护边坡工程为依托,开展边坡振动台试验和数值分析,得到双排抗滑桩的弯矩、锚杆轴力、坡面加速度响应规律及边坡的最终破坏情况. 试验表明:坡面加速度响应规律与测点相对位置有关,测点相对位置越高,加速度响应越明显;坡体裂缝影响岩土体动力特性,在裂缝出现后坡体加速度响应规律会发生显著变化;在地震下抗滑桩弯矩分布接近抛物线形状,弯矩的最大值靠近岩土分界线的下方,抗滑桩弯矩随输入地震波幅值增大成非线性增长;锚杆在4 m/s2地震峰值时刻的动轴向力大于静轴向力的3倍,地震作用是锚杆受力大小的决定因素;由于锚杆的作用,边坡的最终破坏面位于边坡2#的深部,此破裂面位置由边坡2#的中上部土体的滑移破坏与下部土体的越顶破坏组成.


关键词: 振动台试验,  抗滑桩,  锚杆,  弯矩,  破坏面 
Fig.1 Schematic diagram of supporting slope at Dali West Railway Station
类型 $E$/MPa μ φ/(°) c/kPa ρ/(kg·m?3)
碎石土 370 0.30 37 2 2 150
粉质黏土层 19 0.35 15 20 1 870
片麻岩 8 790 0.27 45 1 900 2 430
抗滑桩 按弹性结构 2 500
Tab.1 Physical and mechanical parameters of materials
物理量 相似关系 相似常数 物理量 相似关系 相似常数
密度 ${C_\rho }$ 1 内摩擦角 ${C_\varphi } = 1$ 1
长度 ${C_l}$ 40 应力 ${C_\sigma } = {C_\rho }{C_l}{C_g}$ 40
弹性模量 ${C_E} = {C_\rho }{C_l}{C_g}$ 40 时间 ${C_t} = {C_l}^{0.5}{C_\rho }{C_g}$ 6.324
应变 ${C_\varepsilon } = 1$ 1 频率 ${C_f} = 1/{C_t}$ 0.158
加速度 ${C_a} = {C_g}$ 1 剪切波速 ${C_{{v_{\rm{s}}}}} = C_l^{0.5}{C_\rho }{C_g}$ 6.324
弯矩 ${C_M}{\rm{ = }}{C_g}{C_\rho }C_l^4$ 2 560 000 集中荷载 ${C^*_P}{\rm{ = } }C_l^3{C_\rho }{C_g}$ 64 000
Tab.2 Main similarity constants of model
Fig.2 Schematic diagram of supporting slope
Fig.3 Input seismic wave in model test (Wenchuan, 2 m/s2)
Fig.4 Schematic diagram of numerical simulation model for reinforced slope
Fig.5 Comparison of experimental and numerical results of slope acceleration
Fig.6 Comparison of experimental and numerical results of acceleration response at monitoring point A using Fourier spectrum method
Fig.7 Moment distribution of anti-slide pile
位置 类型 PGA=
1 m/s2
PGA=
2 m/s2
PGA=
4 m/s2
PGA=
6 m/s2
PGA=
8 m/s2
第1排 试验 1 985 2 350 7 382 13 796 25 344
数值 2 340 3 621 9 105 17 880 34 283
第2排 试验 5 109 5 785 14 691 28 903 48 904
数值 5 772 6 893 19 082 33 798 57 210
Tab.3 Contrast of maximum bending moment for anti-slide piles kN·m
Fig.8 Location of measuring points on bolts
Fig.9 Schematic diagram of bolt stress
Fig.10 Permanent displacement response of monitoring points in test
Fig.11 Failure state of model after earthquake
Fig.12 Shear failure diagram of reinforced slope
[1]   涂杰文. 抗滑桩加固滑坡体地震反应离心机模型试验及分析[D]. 哈尔滨: 哈尔滨工业大学, 2015.
TU Jie-wen. Centrifugal model test and analysis on seismic response of landslide mass reinforced by anti-slide pile [D]. Harbin: Harbin Institute of Technology, 2015.
[2]   ZHANG J, LIAO Y, MA Y Seismic damage of earth structures of road engineering in the 2008 Wenchuan earthquake[J]. Environmental Earth Sciences, 2012, 65 (4): 987- 993
doi: 10.1007/s12665-011-1519-5
[3]   AI-DEFAE A H, KNAPPETT J A Newmark sliding block model for pile-reinforced slopes under earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 265- 278
doi: 10.1016/j.soildyn.2015.04.013
[4]   AI-DEFAE A H. Seismic performance of pile-reinforced slopes [D]. Dundee: University of Dundee, 2013.
[5]   付晓, 张建经, 周立荣 多级框架锚索和抗滑桩联合作用下边坡抗震性能的振动台试验研究[J]. 岩土力学, 2017, 38 (2): 462- 470
FU Xiao, ZHANG Jian-jing, ZHOU Li-rong Shaking table test of seismic response of slope reinforced by combination of anti-slide piles and multi-frame foundation beam with anchor cable[J]. Rock and Soil Mechanics, 2017, 38 (2): 462- 470
[6]   曲宏略, 张建经, 朱大鹏 预应力锚索桩板墙抗震设计计算方法研究[J]. 岩石力学与工程学报, 2013, (Suppl.2): 4149- 4156
QU Hong-lue, ZHANG Jian-jing, ZHU Da-peng Research on aseismic design of prestressed anchor sheet pile wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, (Suppl.2): 4149- 4156
[7]   赖杰, 郑颖人, 刘云, 等 地震作用下双排抗滑桩支护边坡振动台试验研究[J]. 岩土工程学报, 2014, 36 (4): 680- 686
LAI Jie, ZHENG Ying-ren, LIU Yun, et al Shaking table tests on double-row anti-slide piles of slopes under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (4): 680- 686
doi: 10.11779/CJGE201404012
[8]   ADACHI Y, MIURA K, MIURA K M, et al. Model shaking table test on the damage to pile foundation in earthquake-induced lateral flow of ground with non-liquefied surface layer [C]// Proceedings of the 13th International Offshore and Polar Engineering Conference. Honolulu: International Society Offshore and Polar Engineers, 2003: 756-761.
[9]   雷达, 蒋关鲁, 刘伟豪, 等 前后排抗滑桩加固滑坡桥基的振动台试验研究[J]. 岩石力学与工程学报, 2017, 36 (9): 2297- 2304
LEI Da, JIANG Guan-lu, LIU Wei-hao, et al Shaking table test study on bridge foundation reinforcement with the front and back row anti-slide piles on slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2297- 2304
[10]   林皋, 朱彤, 林蓓, 等 结构动力模型试验的相似技巧[J]. 大连理工大学学报, 2000, 40 (1): 1- 8
LIN Gao, ZHU Tong, LIN Bei, et al Similarity technique for dynamic structural model test[J]. Journal of Dalian University of Technology, 2000, 40 (1): 1- 8
doi: 10.3321/j.issn:1000-8608.2000.01.001
[11]   何川, 李林, 张景, 等 隧道穿越断层破碎带震害机理研究[J]. 岩土工程学报, 2014, 36 (3): 427- 434
HE Chuan, LI Lin, ZHANG Jing, et al Seismic damage mechanism of tunnels through fault zones[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (3): 427- 434
doi: 10.11779/CJGE201403004
[12]   ZONG Z H, ZHOU R, HUANG X Y, et al Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2014, 15 (5): 351- 363
[13]   陈国兴, 左熹, 王志华, 等 地铁车站结构近远场地震反应特性振动台试验[J]. 浙江大学学报:工学版, 2010, 44 (10): 1955- 1961
CHEN Guo-xing, ZUO Xi, WANG Zhi-hua, et al Shaking table model test of subway station structure under far field and near field ground motion[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (10): 1955- 1961
[14]   罗永红. 地震作用下复杂斜坡响应规律研究[D].成都: 成都理工大学, 2011.
LUO Yong-hong. Study on complex slopes response law under earthquake action [D]. Chengdu: Chengdu University of Technology, 2011.
[15]   Itasca Consulting Group Inc. Fast Lagrangian analysis of continua in 3 dimensions [M]. Minneapolis: Itasca Consulting Group Inc., 2005.
[16]   黄润秋 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 2009, 28 (6): 1239- 1249
HUANG Run-qiu Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (6): 1239- 1249
doi: 10.3321/j.issn:1000-6915.2009.06.021
[1] Xue-you QUAN,Qian HENG,Xiong-song LI,Lian-jie LIU. Shear test methods of bonded anchor bolts in concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 748-758.
[2] Yao JIN,Wei ZHANG. Real-time fire detection algorithm with Anchor-Free network architecture[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2430-2436.
[3] Lei DING,Gen-shu TONG,Lei ZHANG. Shear behavior of exposed steel column base joint[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 73-82.
[4] De-qi TANG,Feng YU,Xiang-guo HUANG,Hai-bing CHEN,Tang-dai XIA. Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1457-1466.
[5] CAI Zi-wei, LU Zhou-dao, LI Ling-zhi, SU Lei, LIN Chuang. Experimental study on shear performance of bolted side-plated reinforced concrete beams[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 82-88.
[6] SUN Xiao-yan, YAO Chen-chun, WANG Hai-long, ZHANG Zhi-cheng. Parameter influence analysis of wedge-type anchorages for FRP tendons based on three-dimensional finite element model[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1058-1067.
[7] ZHUGE Ping, DING Yong, HOU Su-wei, QIANG Shi-zhong.
Optimization design and fatigue test of new CFRP tendon anchor assembly
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1822-1827.
[8] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 502-507.
[9] CHEN Jia-Yi, XIE Xu, XU Ai-Min, et al. Study of tendon anchorage zones of long-span post-tensioned prestressed concrete box girder[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(6): 1077-1082.