Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (12): 2430-2436    DOI: 10.3785/j.issn.1008-973X.2020.12.018
    
Real-time fire detection algorithm with Anchor-Free network architecture
Yao JIN(),Wei ZHANG*()
School of Microelectronics, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(1682KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The existing fire detection algorithms had problems such as too complicated model structure, poor real-time ability, and low detection rate. A fast and efficient fire detection algorithm based on convolutional neural network was proposed, in order to solve those problems. The Anchor-Free network structure was adoped as the whole architecture, which avoided the shortcomings of too many hyper-parameters and complex network structure in the Anchor-based detector. MobileNetV2 was selected as the feature extraction backbone network in order to meet the requirements of high real-time ability. A classification and a box prediction task-specific subnet suitable for fire detection were designed considering that the size and shape of the flame were different from other objects. A feature selective module was introduced to help the feature pyramid network automatically selected a more suitable pyramid feature layer. The algorithm achieves 90.1% accuracy on the self-built dataset, and has good performance on the public fire dataset. The speed of the network achieves 24.6 frames per second. The experimental results show that the detection precision of the proposed algorithm is high and the speed is fast while being simpler. The comprehensive performance of the algorithm is better than other existing fire detection algorithms.



Key wordscomputer vision      object detection      fire detection      Anchor-Free      deformable convolution      feature selective module     
Received: 18 December 2019      Published: 31 December 2020
CLC:  TP 391.4  
Corresponding Authors: Wei ZHANG     E-mail: jin_yao@tju.edu.cn;tjuzhangwei@tju.edu.cn
Cite this article:

Yao JIN,Wei ZHANG. Real-time fire detection algorithm with Anchor-Free network architecture. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2430-2436.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.12.018     OR     http://www.zjujournals.com/eng/Y2020/V54/I12/2430


采用Anchor-Free网络结构的实时火灾检测算法

为了解决现有的火灾检测算法中模型复杂,实时性差,检测精度较低的问题,提出快速高效的火灾检测算法. 该算法采用Anchor-Free网络结构,克服了Anchor方法中超参数过多、网络结构复杂的缺点;选用MobileNetV2作为基础特征提取网络,满足了检测的高实时性需求;针对火焰目标的形状、尺度多变的特点,设计适合于火焰检测的分类与边框预测子网络;引入特征选择模块,在特征金字塔网络中自动选择更合适的金字塔特征层. 算法在自建数据集上的检测精度达到90.1%;在公开数据集上取得了较好的检测结果,其检测速度可达24.6 帧/s. 实验结果表明,算法的网络模型简单,检测精度较高,检测速度较快;综合性能优于现有的其他火灾检测算法.


关键词: 计算机视觉,  目标检测,  火灾检测,  Anchor-Free,  可形变卷积,  特征选择模块 
Fig.1 Network architecture of real-time fire detection algorithm with Anchor-Free network architecture
Fig.2 Effective area of feature pyramid level
Fig.3 Feature selection process in FPN
Fig.4 Feature selective module
算法 可形变卷积
模块
特征选择
模块
AP50 /% 单张图片检测
时间/ms
RetinaNet-
MobileNet
? ? 87.3 41.5
本文算法 ? 86.3 35.7
? 87.9 37.1
90.1 40.7
Tab.1 Ablation study results
Fig.5 Comparison of fire detection results of RetinaNet-MobileNetV2 and Anchor-Free network architecture
算法 主干网络 AP50 /% 单张图片检测时间/ms
YoloV3 DarkNet-53 89.2 38.4
SSD300 Vgg[21] 85.0 27.6
ReinaNet-MobileNet MobileNetV2 87.3 41.5
本文 MobileNetV2 90.1 40.7
Tab.2 Comparison of fire detection results of the representative object detection algorithms and proposed algorith
Fig.6 Fire detection public dataset
算法 TPR/% TNR/%
图6(a) 图6(b) 图6(c) 图6(d) 图6(e) 图6(f) 图6(g) 图6(h)
文献[22] 94.59 ? 92.25 ? 95.45 ? ? ?
文献[23] 94.98 ? 93.00 ? 96.50 ? ? ?
文献[24] 91.20 ? ? 88.60 95.80 ? ? ?
文献[25] 95.70 ? 93.10 ? 100 ? ? ?
文献[26] 93.00 ? 91.00 ? 100 ? ? 100
文献[2] 100 94.29 96.15 ? 100 95.20 ? ?
本文 100 96.15 94.75 97.95 99.49 97.41 100 100
Tab.3 Comparison of fire detection results of existing fire detection algorithms and proposed algorith
[1]   SEEBAMRUNGSAT J, PRAISING S, RIYAMONGKOL P. Fire detection in the buildings using image processing [C]// 2014 3rd ICT International Student Project Conference. Thailand: IEEE, 2014: 95-98.
[2]   HASHEMZADEH M, ZADEMEHDI A Fire detection for video surveillance applications using ICA K-medoids-based color model and efficient spatio-temporal visual features[J]. Expert Systems with Applications, 2019, 130: 60- 78
doi: 10.1016/j.eswa.2019.04.019
[3]   KIM B, LEE J A video-based fire detection using deep learning models[J]. Applied Sciences, 2019, 9 (14): 2862
doi: 10.3390/app9142862
[4]   WU S, ZHANG L. Using popular object detection methods for real time forest fire detection [C]// 2018 11th International Symposium on Computational Intelligence and Design. Hangzhou: IEEE, 2018: 280-284.
[5]   LAW H, DENG J. CornerNet: detecting objects as paired keypoints [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 734-750.
[6]   ZHU C, HE Y, SAVVIDES M. Feature selective anchor-free module for single-shot object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Long Beach: IEEE, 2019: 840-849.
[7]   TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 9627-9636.
[8]   KONG T, SUN F, LIU H, et al. FoveaBox: beyond anchor-based object detector [EB/OL]. [2019-04-08]. https://arxiv.org/ftp/arxiv/papers/1904/1904.03797.pdf.
[9]   SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[10]   LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[11]   LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
[12]   DAI J, QI H, XIONG Y, et al. Deformable convolutional networks [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 764-773.
[13]   SUN F, KONG T, HUANG W, et al Feature pyramid reconfiguration with consistent loss for object detection[J]. IEEE Transactions on Image Processing, 2019, 28 (10): 5041- 5051
doi: 10.1109/TIP.2019.2917781
[14]   NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines [C]// Proceedings of the 27th International Conference on Machine Learning. Haifa: ACM, 2010: 807-814.
[15]   REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
[16]   LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context [C]// European Conference on Computer Vision. Swizterland: Springer, 2014: 740-755.
[17]   REDMON J, FARHADI A. Yolov3: an incremental improvement [EB/OL]. [2018-04-08]. https://arxiv.org/pdf/1804.02767.pdf.
[18]   LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37.
[19]   HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[20]   NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation [C]// European Conference on Computer Vision. Amsterdam: Springer, 2016: 483-499.
[21]   SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// International Conference on Learning Representations. San Diego: ICLR, 2015: 1–14.
[22]   BORGES P V K, IZQUIERDO E A probabilistic approach for vision-based fire detection in videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20 (5): 721- 731
doi: 10.1109/TCSVT.2010.2045813
[23]   TRUONG T X, KIM J M Fire flame detection in video sequences using multi-stage pattern recognition techniques[J]. Engineering Applications of Artificial Intelligence, 2012, 25 (7): 1365- 1372
doi: 10.1016/j.engappai.2012.05.007
[24]   吴茜茵, 严云洋, 杜静, 等 多特征融合的火焰检测算法[J]. 智能系统学报, 2015, 10 (2): 240- 247
WU Xi-yin, YAN Yun-yang, DU Jing, et al Fire detection based on fusion of multiple features[J]. CAAI Transactions on Intelligent Systems, 2015, 10 (2): 240- 247
[25]   KONG S G, JIN D, LI S, et al Fast fire flame detection in surveillance video using logistic regression and temporal smoothing[J]. Fire Safety Journal, 2016, 79: 37- 43
doi: 10.1016/j.firesaf.2015.11.015
[26]   梅建军, 张为 基于ViBe与机器学习的早期火灾检测算法[J]. 光学学报, 2018, 38 (7): 60- 67
MEI Jian-jun, ZHANG Wei Early fire detection algorithm based on ViBe and machine learning[J]. Acta Optica Sinica, 2018, 38 (7): 60- 67
[1] Ying-jie XIA,Cong-yu OUYANG. Dynamic image background modeling method for detecting abandoned objects in highway[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1249-1255.
[2] Chen-bin ZHENG,Yong ZHANG,Hang HU,Ying-rui WU,Guang-jing HUANG. Object detection enhanced context model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 529-539.
[3] Ying LI,Fang CHENG,Zhi-lin ZHAO. Machining precision online measurement of large span pin hole using structured light[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 557-565.
[4] WANG Zhi, ZHU Shi qiang, BU Yan, GUO Zhen min. Stereo matching algorithm using improved guided filtering[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2262-2269.
[5] YE Fang-fang, XU Li. Real-time detection and discrimination of static objects and ghosts[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 181-185.
[6] XIE Di, TONG Ruo-feng, TANG Min, FENG Yang. Distinguishable method for video fire detection[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 698-704.
[7] XU Xue-mei, LI Li-xian, ZHANG Jian-yang, NI Lan, HUANG Zheng-yu, CAO Jian. Tracking algorithm of visible particles in transparent
liquid pharmaceutical
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1822-1830.