Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2342-2347    DOI: 10.3785/j.issn.1008-973X.2019.12.011
Civil Engineering, Hydraulic Engineering     
Impact of submarine debris flow on offshore piles
Dong-li LI1,2(),E-chuan YAN1,*(),Bin FENG3,Yuan-qiang CAI3
1. Faculty of Engineering, China University of Geosciences, Wuhan 430000, China
2. China Railway Siyuan Survey and Design Group Co. LTD, Wuhan 430000, China
3. Department of Architecture Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Download: HTML     PDF(1063KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Twelve sets of experiments were carried out by changing the slope and mass fraction of kaolin. The rheological properties of debris flow were described by H-B model and power rate model; the modified Reynolds number for non-Newtonian fluids was obtained. According to the theory of fluid mechanics, the relationship between the dimensionless drag coefficient and the Reynolds number of non-Newtonian fluid was established. Results show that the debris flow viscosity varies greatly among different proportions, and the shear dilution characteristics of the debris flow can be described by power-law model or H-B model. The bending moment of pile reaches the largest at the water-soil interface. Because of the soil reaction around the pile, the bending moment of pile decreases along the buried depth. The drag coefficient decreases with the increase of the Reynolds number of non-Newtonian fluids.



Key wordssubmarine debris flow      impact      pile      non-Newtonian fluids      H-B model      power rate model     
Received: 26 October 2018      Published: 17 December 2019
CLC:  TU 411  
Corresponding Authors: E-chuan YAN     E-mail: 985203319@qq.com;13907199600@139.com
Cite this article:

Dong-li LI,E-chuan YAN,Bin FENG,Yuan-qiang CAI. Impact of submarine debris flow on offshore piles. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2342-2347.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.011     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2342


海底碎屑流对海洋桩的冲击

通过改变坡度和高岭土的质量分数,进行12组模型试验. 采用H-B模型和幂率模型描述泥浆流变性质,得到适用于非牛顿流体的修正雷诺数;根据流体力学理论,建立无量纲阻力系数与非牛顿流体雷诺数之间的关系式. 结果表明:不同配比的泥浆黏度有较大的差异,采用幂率模型或H-B模型可以描述泥浆的剪切稀释特性. 桩身弯矩在水土界面处达到最大值,受到桩周土反力作用,桩身弯矩沿埋深减小;海洋桩的桩阻力系数随非牛顿流体雷诺数的增大而减小.


关键词: 海底碎屑流,  冲击,  桩基,  非牛顿流体,  H-B模型,  幂率模型 
Fig.1 Schematic diagram of submarine landslide model flume
Fig.2 Part of submarine landslide device
Fig.3 Schematic layout and instrumentation of pile test
泥浆编号 wc / % ws / % ww / % ρ /(kg·m?3
1 15 57 28 1 729
2 20 52 28 1 745
3 25 47 28 1 766
4 30 42 28 1 776
5 35 37 28 1 791
6 40 32 28 1 804
Tab.1 Slurry composition and parameters
Fig.4 Rheological curves of slurry under different mass fractions of clay
泥浆编号 幂率模型 H-B 模型
1 ${\rm{\tau }} = 4.4{\dot \gamma ^{0.43}}$ ${\rm{\tau }} = 0.6 + 3.9{\dot \gamma ^{0.46}}$
2 ${\rm{\tau }} = 6.3{\dot \gamma ^{0.36}}$ ${\rm{\tau }} = 2.0 + 4.5{\dot \gamma ^{0.43}}$
3 ${\rm{\tau }} = 6.8{\dot \gamma ^{0.35}}$ ${\rm{\tau }} = 2.3 + 4.7{\dot \gamma ^{0.42}}$
4 ${\rm{\tau }} = 7.2{\dot \gamma ^{0.38}}$ ${\rm{\tau }} = 5.9 + 2.3{\dot \gamma ^{0.64}}$
5 ${\rm{\tau }} = 7.5{\dot \gamma ^{0.45}}$ ${\rm{\tau }} = 7.1 + 2.5{\dot \gamma ^{0.69}}$
6 ${\rm{\tau }} = 7.8{\dot \gamma ^{0.48}}$ ${\rm{\tau }} = 9.5 + 1.6{\dot \gamma ^{0.85}}$
Tab.2 Rheological model of slurry under different mass fractions of clay
Fig.5 Time history curve of pile moment
Fig.6 Measured bending moment of pile at slope of 12°
Fig.7 Bending moment of pile under landslip
α 泥浆编号 u/(m·s?1 H/cm Re q/(N·m?1 Cd
12° 1 0.54 7.1 33.8 0.003 0 0.372
2 0.58 7.6 38.2 0.003 8 0.405
3 0.62 7.2 42.3 0.004 2 0.393
4 0.50 6.8 30.4 0.003 4 0.487
5 0.44 5.6 25.9 0.002 7 0.565
6 0.52 6.9 33.2 0.003 6 0.463
1 0.25 6.9 10.8 0.002 1 1.122
2 0.26 7.6 11.2 0.002 7 1.387
3 0.28 7.7 12.2 0.001 6 0.760
4 0.24 8.0 10.1 0.001 2 0.703
5 0.21 7.3 8.1 0.001 5 1.168
6 0.26 8.0 11.6 0.002 1 1.039
Tab.3 Impact force and its corresponding parameters of slurry impact on pile
Fig.8 Drag coefficient versus Reynolds number(H-B rheological models)
[1]   LOCAT J, LEE H J Submarine landslides: advances and challenges[J]. Canadian Geotechnical Journal, 2002, 39 (39): 193- 212
[2]   BRUSCHI R, BUGHI S, SPINAZZE M, et al Impact of debris flows and turbidity currents on seafloor structures[J]. Norsk Geologisk Tidsskrift, 2006, 86 (3): 317- 336
[3]   吴时国, 陈珊珊, 王志君, 等 大陆边缘深水区海底滑坡及其不稳定性风险评估[J]. 现代地质, 2008, (3): 430- 437
WU Shi-guo, CHEN Shan-shan, WANG Zhi-jun, et al Submarine landslide and risk evaluation on its instability in the deepwater continental margin[J]. Geoscience, 2008, (3): 430- 437
doi: 10.3969/j.issn.1000-8527.2008.03.013
[4]   李家钢, 修宗祥, 申宏, 等 海底滑坡块体运动研究综述[J]. 海岸工程, 2012, 31 (04): 67- 78
LI Jia-gang, XIU Zong-xiang, SHEN Hong, et al A review of the studies on submarine mass movement[J]. Coastal Engineering, 2012, 31 (04): 67- 78
doi: 10.3969/j.issn.1002-3682.2012.04.009
[5]   年廷凯, 刘敏, 刘博, 等 极端波浪条件下黏土质斜坡海床稳定性解析[J]. 海洋工程, 2016, 34 (04): 9- 15
NIAN Ting-kai, LIU Min, LIU Bo, et al Stability analysis of clayey sloping seabed under extreme wave loads[J]. The Ocean Engineering, 2016, 34 (04): 9- 15
[6]   HAZA Z F, HARAHAP I S H, DAKSSA L M Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base[J]. Natural Hazards, 2013, 68 (2): 587- 611
doi: 10.1007/s11069-013-0643-9
[7]   FALLICK A E Implications of linearly correlated oxygen and hydrogen isotopic compositions for kaolinite and illite in the Magnus sandstone, North Sea[J]. Clays and Clay Minerals, 1993, 41 (2): 184- 190
doi: 10.1346/CCMN.1993.0410207
[8]   MOHRIG D, ELVERH?I A, PARKER G Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits[J]. Marine Geology, 2015, 154 (1–4): 117- 129
[9]   ELVERHOI A, BREIEN H, BLASIO F V D, et al Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit[J]. Ocean Dynamics, 2010, 60 (4): 1027- 1046
doi: 10.1007/s10236-010-0317-z
[10]   SAWYER D E, FLEMINGS P B, BUTTLES J, et al Mudflow transport behavior and deposit morphology: role of shear stress to yield strength ratio in subaqueous experiments[J]. Marine Geology, 2012, 307-310 (3): 28- 39
[11]   THIERRY M, JAN A The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48 (2): 269- 299
doi: 10.1046/j.1365-3091.2001.00360.x
[12]   PAZWASH H, ROBERTSON J M Forces on bodies in Bingham fluids[J]. Journal of Hydraulic Research, 1975, 13 (1): 35- 55
doi: 10.1080/00221687509499719
[13]   RANDOLPH M F, WHITE D J Interaction forces between pipelines and submarine slides: a geotechnical viewpoint[J]. Ocean Engineering, 2012, 48 (7): 32- 37
[14]   ZAKERI A, H?EG K, NADIM F Submarine debris flow impact on pipelines. Part I: experimental investigation[J]. Coastal Engineering, 2008, 55 (12): 1209- 1218
doi: 10.1016/j.coastaleng.2008.06.003
[15]   ZAKERI A, HAWLADER B, CHI K Drag forces caused by submarine glide block or out-runner block impact on suspended (free-span) pipelines[J]. Ocean Engineering, 2012, 47 (none): 50- 57
[16]   ZAKERI A, H?EG K, Nadim F Submarine debris flow impact on pipelines. Part Ⅱ: numerical analysis[J]. Coastal Engineering, 2009, 56 (1): 1- 10
doi: 10.1016/j.coastaleng.2008.06.005
[17]   郑志昌, 陈俊仁, 朱照宇 南海海底土体物理力学特征及其地质环境初步研究[J]. 水文地质工程地质, 2004, (4): 50- 53
ZHENG Zhi-chang, CHEN Jun-ren, ZHU Zhao-yu Physical and mechanical characteristics of seabed soils and its geological environment in South China Sea[J]. Hydrogeology and Engineering Geology, 2004, (4): 50- 53
doi: 10.3969/j.issn.1000-3665.2004.04.008
[18]   王淼, 吴云青, 苏萌, 等 单桩式基础应用于我国海上风电的可行性探讨[J]. 电力建设, 2013, 34 (4): 63- 66
WANG Miao, WU Yun-qing, SU Meng, et al Application of single pile foundation in offshore wind power in China[J]. Electric Power Construction, 2013, 34 (4): 63- 66
doi: 10.3969/j.issn.1000-7229.2013.04.013
[19]   王腾, 王天霖 粉土p-y曲线的试验研究[J]. 岩土力学, 2009, 30 (5): 1343- 1346
WANG TENG, WANG TIAN-LIN Experimental research on silt p-y curves[J]. Rock and Soil Mechanics, 2009, 30 (5): 1343- 1346
doi: 10.3969/j.issn.1000-7598.2009.05.027
[1] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[2] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[3] Xia SHANG,Mei-jia WANG,Liu-xiao XU,Li-hui ZHANG. Configuration optimization of electric vehicle charging facilities in urban areas[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1210-1217.
[4] Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.
[5] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[6] Jun-tao WU,Kui-hua WANG,Xin LIU,Fan SUN. Dynamic response of pile-surrounding soil based on inversion of existing pile dynamic theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 521-528.
[7] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[8] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[9] De-qi TANG,Feng YU,Xiang-guo HUANG,Hai-bing CHEN,Tang-dai XIA. Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1457-1466.
[10] Wei-ping CAO,Bing XIA,Xin GE. Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1946-1954.
[11] WANG Zhong-jin, ZHANG Ri-hong, WANG Kui-hua, FANG Peng-fei, XIE Xin-yu, XU Han-qiang, LI Jin-zhu. Bearing characteristic of static drill rooted pile considering condition of energy carrier[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 11-18.
[12] ZHANG Zheng-xuan, CHEN Gang, XU Quan-biao, GONG Shun-feng, XIAO Zhi-bin, LIU Cheng-bin. Experimental study on flexural and shear performance of prestressed steel strand ultra-high strength concrete H-type piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 31-39.
[13] LIU Jun-wei, ZHU Na, WANG Li-zhong, SHANG Wen-chang. Degenerate mechanism of sand-steel interface under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1123-1130.
[14] DING Hui-ming, WU Ying-zhe, ZHENG Jin-yang, CHEN Zhao-hui, YIN Li-jun. Experimental study on low-temperature mechanical properties of S30408 welded joints[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 217-223.
[15] KUAI Yan-rong, QI Mei-lan, LI Jin-zhao. Analysis of wave forces on bridge substructure in near-shore[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2356-2364.